matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationeinfaches Integral!?
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Integration" - einfaches Integral!?
einfaches Integral!? < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

einfaches Integral!?: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 23:28 Sa 12.06.2010
Autor: student87

Aufgabe
Eine Wechselspannung hat den gezeichneten Verlauf
[Dateianhang nicht öffentlich]
a) Stellen Sie die Zeitfunktion der Spannung auf.
b) Wie groß ist der Gleichrichtwert?

Hallo,
ich glaube ich scheitere bei der Aufgabe nur beim Berechnen des Integrals.
Die Zeitfunktion lautet:
zu a)
[mm] u_{t}=\bruch{2u}{T}*t-u [/mm]
Das steht auch noch so in der Musterlösung.

zu b)
Den Gleichrichtwert berechnet man mit:
[mm] |u|=\bruch{1}{T}*\integral_{0}^{T}{|u_{t}| dt} [/mm]

wenn man dann einsetzt und integriert:

[mm] =\bruch{1}{T}*\integral_{0}^{T}{| \bruch{2u}{T}*t-u | dt} [/mm]

[mm] =\bruch{1}{T}*|\bruch{1}{2}*\bruch{2u}{T}*t^2-u*t| [/mm]
Grenzen einsetzen:
[mm] =\bruch{1}{T}*|\bruch{1}{2}*\bruch{2u}{T}*T^2-u*T| [/mm]

gekürzt:

[mm] =\bruch{1}{T}*|u*T-u*T| [/mm]
und das ergibt Null. Es muss aber [mm] \bruch{u}{2} [/mm] heraus kommen.

Wo ist mein Fehler???

gruß
markus


Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
        
Bezug
einfaches Integral!?: Antwort
Status: (Antwort) fertig Status 
Datum: 00:18 So 13.06.2010
Autor: schachuzipus

Hallo Markus,

> Eine Wechselspannung hat den gezeichneten Verlauf
>  [Dateianhang nicht öffentlich]
>  a) Stellen Sie die Zeitfunktion der Spannung auf.
>  b) Wie groß ist der Gleichrichtwert?
>  Hallo,
>  ich glaube ich scheitere bei der Aufgabe nur beim
> Berechnen des Integrals.
>  Die Zeitfunktion lautet:
>  zu a)
>  [mm]u_{t}=\bruch{2u}{T}*t-u[/mm] [ok]
>  Das steht auch noch so in der Musterlösung.
>  
> zu b)
>  Den Gleichrichtwert berechnet man mit:
>  [mm]|u|=\bruch{1}{T}*\integral_{0}^{T}{|u_{t}| dt}[/mm]
>  
> wenn man dann einsetzt und integriert:
>  
> [mm]=\bruch{1}{T}*\integral_{0}^{T}{| \bruch{2u}{T}*t-u | dt}[/mm]
>  
> [mm]=\bruch{1}{T}*|\bruch{1}{2}*\bruch{2u}{T}*t^2-u*t|[/mm]
> Grenzen einsetzen:
>   [mm]=\bruch{1}{T}*|\bruch{1}{2}*\bruch{2u}{T}*T^2-u*T|[/mm]
>
> gekürzt:
>  
> [mm]=\bruch{1}{T}*|u*T-u*T|[/mm]
>  und das ergibt Null. Es muss aber [mm]\bruch{u}{2}[/mm] heraus
> kommen. [ok]

Das erhalte ich auch.

>  
> Wo ist mein Fehler???

Schreibe das Integral betragsfrei, indem du es aufteilst in die Summe zweier Integrale.

Im Bereich $0$ bis [mm] $\frac{T}{2}$ [/mm] ist der Integrand negativ, dh. dort gilt

[mm] $\left|\frac{2u}{T}t-u\right|=u-\frac{2u}{T}t$ [/mm]

Und im Bereich [mm] $\frac{T}{2}$ [/mm] bis $T$ ist der Integrand positiv, es gilt also entsprechend:

[mm] $\left|\frac{2u}{T}t-u\right|=\frac{2u}{T}t-u$ [/mm]

Damit: [mm] $\frac{1}{T}\int\limits_{0}^{T}{\left|\frac{2u}{T}t-u\right| \ dt} [/mm] \ = \ [mm] \frac{1}{T}\cdot{}\left[\int\limits_{0}^{T/2}{\left|\frac{2u}{T}t-u\right| \ dt}+\int\limits_{T/2}^{T}{\left|\frac{2u}{T}t-u\right| \ dt}\right]$ [/mm]

[mm] $=\frac{1}{T}\cdot{}\left[\int\limits_{0}^{T/2}{\left(u-\frac{2u}{T}t\right) \ dt}+\int\limits_{T/2}^{T}{\left(\frac{2u}{T}t-u\right) \ dt}\right]=\ldots$ [/mm]

>  
> gruß
>  markus
>  


LG

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]