matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Sonstigeseinfache modulo Frage
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Sonstiges" - einfache modulo Frage
einfache modulo Frage < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

einfache modulo Frage: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:55 Di 23.10.2007
Autor: Bastiane

Hallo zusammen!

Nur eine kurze Frage: wenn [mm] \frac{n(n-1)}{4} [/mm] eine natürliche Zahl sein soll, ist es richtig, dass dann n mod [mm] 4\in\{0,1\} [/mm] liegen muss? Wenn ja, warum?

Viele Grüße
Bastiane
[cap]


        
Bezug
einfache modulo Frage: Antwort
Status: (Antwort) fertig Status 
Datum: 22:10 Di 23.10.2007
Autor: dormant

Hi!

[mm] \bruch{n(n-1)}{4} [/mm] ist gerade (da n, oder n-1 gerade) und [mm] \in\IN\subset\IZ. [/mm] Daher ist [mm] \bruch{n(n-1)}{4} [/mm] mod 2 = 0 und [mm] \bruch{n(n-1)}{8} [/mm] mod 2 = 0;1.

Gruß,
dormant

Bezug
                
Bezug
einfache modulo Frage: Danke.
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:49 Di 23.10.2007
Autor: Bastiane

Hallo dormant!

> [mm]\bruch{n(n-1)}{4}[/mm] ist gerade (da n, oder n-1 gerade) und
> [mm]\in\IN\subset\IZ.[/mm] Daher ist [mm]\bruch{n(n-1)}{4}[/mm] mod 2 = 0 und
> [mm]\bruch{n(n-1)}{8}[/mm] mod 2 = 0;1.

Dachte ich mir doch, dass es recht simpel ist. :-) Vielen Dank.

Viele Grüße
Bastiane
[cap]

Bezug
                        
Bezug
einfache modulo Frage: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:19 Do 25.10.2007
Autor: Gnometech

Huhu Bastiane!

Man könnte auch einfach sagen, dass wenn $n(n-1)$ durch 4 teilbar ist, dass dann entweder $n$ durch 4 teilbar ist oder aber $(n-1)$, denn eines von beiden ist in jedem Fall ungerade.

Falls $n$ durch 4 teilbar ist, gilt $n [mm] \equiv [/mm] 0 [mm] \; \mbox{(mod 4)}$ [/mm] und falls $(n-1)$ durch 4 teilbar ist, gilt $n - 1 [mm] \equiv [/mm] 0 [mm] \; \mbox{(mod 4)} \iff [/mm] n [mm] \equiv [/mm] 1 [mm] \; \mbox{(mod 4)}$. [/mm]

Alles klar? :-)

Liebe Grüße,
Lars

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]