matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis des R1einfache Graphentheorie
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Analysis des R1" - einfache Graphentheorie
einfache Graphentheorie < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

einfache Graphentheorie: Verständnisfragen
Status: (Frage) beantwortet Status 
Datum: 23:09 Mo 05.01.2009
Autor: pathethic

Aufgabe
Frage 1 : "Im Gegensatz dazu ist gerichteter Graph G ein Paar (V,E) bestehend
aus einer endlichen Knotenmenge V und einer Kantenmenge E von geordneten
Knotenpaaren e = (u,v), mit u,v [mm] \in [/mm] V."

Frage 2: "Ist e = {u,v} eine Kante von G, dann nennt man die Knotenen u und v zueinander adjazent oder benachbart und man nennt sie inzident zu e."

zu Frage 1: Heißt das nun, dass die Kante (u,v) etwas anderes ist als die Kante (v,u)?

zu Frage 2:

Was heißt denn nun konkret adjazent und inzident?

Weil folgendes:

"Zwei Knoten heißen adjazent oder benachbart, wenn sie in diesem durch eine Kante verbunden sind."

"Zwei Knoten eines einfachen ungerichteten Graphen heißen inzident, wenn sie eine gemeinsame Kante besitzen."

Ist für mich das selbe, hat für Verwirrung gesorgt, wesshalb ich den Satz nicht verstehe!

Gruß pathethic

        
Bezug
einfache Graphentheorie: Antwort
Status: (Antwort) fertig Status 
Datum: 12:25 Di 06.01.2009
Autor: SEcki


>  zu Frage 1: Heißt das nun, dass die Kante (u,v) etwas
> anderes ist als die Kante (v,u)?

Ja.

> Ist für mich das selbe, hat für Verwirrung gesorgt,
> wesshalb ich den Satz nicht verstehe!

Per se ist das eine nach Definition das Verhältnis von zwei Ecken im Graph (Adjazenz) und das Verhältnis zwischen Ecke und Kante (Inzidenz). Aber es scheint so zu sein, dass man hier diese Definitionen etwas aufgeweicht hat und in dem Fall von benachbarten Ecken synonym verwendet.

SEcki

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]