matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationeindeutige Stammfunktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Integration" - eindeutige Stammfunktion
eindeutige Stammfunktion < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

eindeutige Stammfunktion: Gegenbeispiel?
Status: (Frage) beantwortet Status 
Datum: 22:22 Sa 03.01.2009
Autor: Ninjoo

Aufgabe
Ich frage mich, wieso wir in Ana 2  bewiesen haben,
das sich Stammfunktionen höchstens um eine Konstante unterscheiden.
Das  Beispiel habe ich aus meiner Vorlesung.

Betrachte:

für beliebige [mm] \alpha [/mm] , [mm] \beta [/mm] mit

[mm] \alpha [/mm] < 0 < [mm] \beta [/mm]

[mm] y(t)=\begin{cases} (1/27)*(t-\alpha)^{3} , & \mbox{für } t\le\alpha \\ 0, & \mbox{für } \alpha
ist y(t) Stammfunktion von [mm] \wurzel[3]{y^{2]}}. [/mm]

Also unterscheiden sich die Stammfunktionen nicht nur um eine Konstante.

Wie kann man das mit dem Hauptsatz der Integralrechnung vereinbaren?


        
Bezug
eindeutige Stammfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:39 Sa 03.01.2009
Autor: ardik

Hallo Ninjoo,

> ist y(t) Stammfunktion von [mm]\wurzel[3]{y^{2]}}.[/mm]

Mir fällt erstmal auf, dass [mm]\wurzel[3]{y^{2}}[/mm] keine Funktion ist. Also irgendwas fehlt hier noch ...

Schöne Grüße
 ardik

Bezug
        
Bezug
eindeutige Stammfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 22:49 Sa 03.01.2009
Autor: abakus


> Ich frage mich, wieso wir in Ana 2  bewiesen haben,
>  das sich Stammfunktionen höchstens um eine Konstante
> unterscheiden.
>  Das  Beispiel habe ich aus meiner Vorlesung.
>  Betrachte:
>  
> für beliebige [mm]\alpha[/mm] , [mm]\beta[/mm] mit
>  
> [mm]\alpha[/mm] < 0 < [mm]\beta[/mm]
>  
> [mm]y(t)=\begin{cases} (1/27)*(t-\alpha)^{3} , & \mbox{für } t\le\alpha \\ 0, & \mbox{für } \alpha
>  
> ist y(t) Stammfunktion von [mm]\wurzel[3]{y^{2]}}.[/mm]
>  
> Also unterscheiden sich die Stammfunktionen nicht nur um
> eine Konstante.

Wieso denn? Wenn du behauptest, dass sich StammfunktionEN oder irgendwie zwei sonstige Dinge voneinander unterscheiden, dann musst du erst einmal ZWEI solche Dinge anführen.
Was du hier anführst ist EINE Stammfunktion für EINE abschnittsweise definierte Funktion.
Gruß Abakus




>  
> Wie kann man das mit dem Hauptsatz der Integralrechnung
> vereinbaren?
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]