matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche Differentialgleichungeneindeutige Lösung auf Interval
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Gewöhnliche Differentialgleichungen" - eindeutige Lösung auf Interval
eindeutige Lösung auf Interval < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

eindeutige Lösung auf Interval: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:35 So 16.11.2014
Autor: Killercat

Aufgabe
Zeigen sie, dass das Anfangswertproblem

[mm]y'=t-y^4(t) [/mm] mit [mm]y(0) = 0 [/mm] auf dem Intervall [0,1] eine eindeutige Lösung hat und das die Lösung dort durch -1 nach unten und 1 nach oben begrenzt ist

Hallo,

ich habe ein Problem mit dieser Aufgabe, was zu sehr großen Teilen daran liegt, dass ich Lehramt studiere und wir kein Ana II gemacht haben. Aber genug davon.

Ich weiß, damit eine eindeutige Lösung exisitiert muss die Funktion auf dem Intervall lipschitzstetig sein. Stetig ist sie ja sowieso, da hier ja eine Komposition von 2 stetigen Funktionen vorliegt. Für die Lipschitzstetigkeit würde ich wie folgt ansetzen:

[mm] |f(x,y)-f(x,z)| \le L|y-z| [/mm]
[mm] |t-y^4-t-z^4| = ||-y^4-z^4| = |-z^4-y^4| [/mm]
Hier steht jetzt, dass 2 große Zahlen voneinander abgezogen werden. Da die Lip.Stetigkeit aber nur auf [0,1] gezeigt werden soll, nützt mir diese Erkenntnis aber glaube ich nichts.


Ich bitte um Hilfe.
Liebe Grüße

        
Bezug
eindeutige Lösung auf Interval: Antwort
Status: (Antwort) fertig Status 
Datum: 08:34 Mo 17.11.2014
Autor: fred97

Sei $R:=[0,1] [mm] \times [/mm] [-1,1]$ und $f:R [mm] \to \IR$ [/mm] definiert durch [mm] f(t,y)=t-y^4. [/mm]

Dann haben wir:

1. [mm] \max\{|f(t,y)|: (t,y) \in R \}=1 [/mm]

(zeige das !)

und

2. [mm] |f(t,y)-f(t,z)|=|z^4-y^4|=|z-y|*|z^3+z^2y+zy^2+y^3| [/mm]

Zeige damit:

    |f(t,y)-f(t,z)| [mm] \le [/mm] 4*|y-z|  für alle (t,y), (t,z) [mm] \in [/mm] R.

Aus obigem folgt dann die behauptung aus dem Satz von Picard-Lindelöf für Rechtecke.

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]