matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraeindeutig, Erzeugendensystem
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Algebra" - eindeutig, Erzeugendensystem
eindeutig, Erzeugendensystem < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

eindeutig, Erzeugendensystem: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 16:54 Sa 17.11.2012
Autor: Lu-

Aufgabe
Es seien G ein H Gruppen, M [mm] \subseteq [/mm] G sei ein Erzeugendensystem von G mit [mm] \phi [/mm] : G->H ein Homomorphismus. Beweisen Sie, dass [mm] \phi [/mm] durch die Werte [mm] \phi(x) [/mm] mit x [mm] \in [/mm] M eindeutig bestimmt ist.

hallo
Die Aufgabe an sich ist ja logisch, aber ich habe leider keine Ahnung wie ich den beweis dafür aufbaue....
Ich hab bei der AUfgabe richtig ein Holz vorm Kopf .
Vlt könnt ihr mir da einen Tipp geben, wie ich einsteige in die Aufgabe.

Vielen Dank!

        
Bezug
eindeutig, Erzeugendensystem: Antwort
Status: (Antwort) fertig Status 
Datum: 16:58 Sa 17.11.2012
Autor: tobit09

Hallo Lu,


>  Die Aufgabe an sich ist ja logisch, aber ich habe leider
> keine Ahnung wie ich den beweis dafür aufbaue....
>  Ich hab bei der AUfgabe richtig ein Holz vorm Kopf .
>  Vlt könnt ihr mir da einen Tipp geben, wie ich einsteige
> in die Aufgabe.

Wie habt ihr "Erzeugendensystem" einer Gruppe definiert?


Viele Grüße
Tobias

Bezug
                
Bezug
eindeutig, Erzeugendensystem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:21 Sa 17.11.2012
Autor: Lu-

Sei G eine Gruppe und [mm] M\subseteq [/mm] G. Dann heißt <M> = [mm] \bigcap_{M \subseteq H , H \le G}H [/mm] die von M erzeugte Untergruppe von G. Gilt <M> =G so sagt man, G werde von M erzeugt und nennt M ein Erzeugendensytem von G.
Ist M endlich d.h. [mm] \exists a_1 [/mm] ,.., [mm] x_n \in [/mm] G : M [mm] =\{a_1,..,a_n\} [/mm] so schreibt man auch [mm] [/mm] statt <M>
Satz: Sei G eine Gruppe und M [mm] \subseteq [/mm] G , M [mm] \not= \{ \} [/mm] . Dann gilt
<M> = [mm] \{ a_1^{\epsilon_1} *...*a_n^{\epsilon_n} | , n \ge 0, a_1,.., a_n \in M. \epsilon_1,.., \epsilon_n \in \{1, -1\}\} [/mm]


Mein Versuch:
elisabet nicht
Es sei  x [mm] \in [/mm]  G beliebig. Da M Erzeugendensystem von G ist (<M>=G), gibt es eine Darstellung

    v =  [mm] a_1^{\epsilon_1} *..*a_n^{\epsilon_n} [/mm]
mit  [mm] a_1,.., a_n \in [/mm] M. [mm] \epsilon_1,.., \epsilon_n \in \{1, -1\} [/mm]

Da [mm] \phi [/mm] ein Homomorphismus ist, muss für die Abbildung gelten

     [mm] \varphi( [/mm] v) = [mm] \varphi [/mm] ( [mm] a_1^{\epsilon_1} *..*a_n^{\epsilon_n} [/mm] ) = [mm] \varphi(a_1^{\epsilon_1}) [/mm] +..+ [mm] \varphi(a_n^{\epsilon_n}) [/mm]


Bezug
                        
Bezug
eindeutig, Erzeugendensystem: Antwort
Status: (Antwort) fertig Status 
Datum: 17:31 Sa 17.11.2012
Autor: tobit09

Das sieht gut aus! [ok] Du bist fast fertig.


> Mein Versuch:
>  Es sei  x [mm]\in[/mm]  G beliebig. Da M Erzeugendensystem von G
> ist (<M>=G), gibt es eine Darstellung
>  
> v x =  [mm]a_1^{\epsilon_1} *..*a_n^{\epsilon_n}[/mm]
>  mit  [mm]a_1,.., a_n \in[/mm]
> M. [mm]\epsilon_1,.., \epsilon_n \in \{1, -1\}[/mm]
>
> Da [mm]\phi[/mm] ein Homomorphismus ist, muss für die Abbildung
> gelten
>  
> [mm]\varphi([/mm] v) = [mm]\varphi[/mm] ( [mm]a_1^{\epsilon_1} *..*a_n^{\epsilon_n}[/mm]
> ) = [mm]\varphi(a_1^{\epsilon_1})[/mm] +..+
> [mm]\varphi(a_n^{\epsilon_n})[/mm]

[mm] $=\varphi(a_1)^{\epsilon_1}*\ldots*\varphi(a_n)^{\epsilon_n}$. [/mm]

Dabei sind [mm] $\epsilon_1,\ldots,\epsilon_n$ [/mm] nur von x und nicht von [mm] $\varphi$ [/mm] abhängig.

Somit ist [mm] $\varphi(x)$ [/mm] durch [mm] $\varphi(a_1),\ldots,\varphi(a_n)$ [/mm] eindeutig bestimmt.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]