matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-Analysiseigenschaften von funktionen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Schul-Analysis" - eigenschaften von funktionen
eigenschaften von funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

eigenschaften von funktionen: aufgabe
Status: (Frage) beantwortet Status 
Datum: 20:21 Sa 30.04.2005
Autor: scan

Aufgabenstellung:
untersuche, ob es die funktion mit den angegebenen eigenschaften gibt. gebe die funktionsgleichung gegebenenfalls an.

-ganzrational vom grad 5
-punktsymmetrie des graphen zum koordinatenursprung
-hochpunkt (3;9)
-wendestelle bei x=4

wäre um eine antwort echt sehr dankbar.........hab davon nämlich null ahnung

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
eigenschaften von funktionen: Erste Ansätze
Status: (Antwort) fertig Status 
Datum: 20:52 Sa 30.04.2005
Autor: Loddar

Hallo scan,

zunächst einmal [willkommenmr] !!


Bitte lies' Dir doch mal unsere Forenregeln durch. Eine nette Begrüßung/Anrede wäre sehr schön gewesen und viel wichtiger: eigene Lösungsansätze !

Hast Du denn überhaupt keine Ideen? Das kann ich mir gar nicht vorstellen ...


Wie sieht denn eine ganzrationale Funktion 5. Grades aus?

$f(x) \ = \ [mm] a*x^5 [/mm] + [mm] b*x^4 [/mm] + [mm] c*x^3 [/mm] + [mm] d*x^2 [/mm] + e*x + f$

Nun müssen wir die einzelnen Eigenschaften berücksichtigen.

Da der Graph [mm] $K_f$ [/mm] symmetrisch zum Ursprung sein soll, vereinfacht sich unsere Funktionsvorschrift sehr:

$f(x) \ = \ [mm] a*x^5 [/mm] + [mm] c*x^3 [/mm] + e*x$


Da bei dem Hochpunkt $H \ ( 3; 9)$ bereits beide Koordinatenwerte angegeben sind, haben wir auch gleich die erste Bestimmungsgleichung:

$f(3) \ = \ 9$


Was weißt Du denn sonst über Hochpunkte bzw. Wendestellen? Welche Eigenschaften müssen denn da erfüllt sein (irgendwas mit Ableitungen)?


Gruß
Loddar


Bezug
        
Bezug
eigenschaften von funktionen: weitere Antwort
Status: (Antwort) fertig Status 
Datum: 21:08 Sa 30.04.2005
Autor: Zwerglein

Hi, scan,

muss ein Sadist gewesen sein, der Euch diese Aufgabe gestellt hat.

Die Lösungen für a, b und c in gerundeter Form sind jedenfalls:

a = 0,004717
b = -0,251572
c = 4,88208

Kriegst Du (in etwa) dasselbe raus?

Bezug
        
Bezug
eigenschaften von funktionen: Brüche!
Status: (Antwort) fertig Status 
Datum: 21:58 So 01.05.2005
Autor: informix

Hallo scan und Zwerglein,

> Aufgabenstellung:
> untersuche, ob es die funktion mit den angegebenen
> eigenschaften gibt. gebe die funktionsgleichung
> gegebenenfalls an.
>
> -ganzrational vom grad 5
> -punktsymmetrie des graphen zum koordinatenursprung
> -hochpunkt (3;9)
> -wendestelle bei x=4
>
> wäre um eine antwort echt sehr dankbar.........hab davon
> nämlich null ahnung
>  

Vielleicht ist die Aufgabe nur ein Beispiel dafür, wie wichtig es ist, mit Brüchen zu rechnen!!

Es gibt durchaus ein exaktes Ergebnis:

$a = [mm] \bruch{1}{212}$ [/mm]  $b = [mm] \bruch{- 40}{159}$ [/mm]  $c [mm] =\bruch{1035}{212}$ [/mm]

a [mm] \approx [/mm] 0.004716981132 ;  b [mm] \approx [/mm] -0.2515723270 ;  c [mm] \approx [/mm] 4.882075471

Natürlich muss man die Probe mit den Brüchen machen! Sie sind nicht wirklich angenehm, aber machbar. ;-)


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]