matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und Reihene - Funktion zu Reihe gesucht
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Folgen und Reihen" - e - Funktion zu Reihe gesucht
e - Funktion zu Reihe gesucht < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

e - Funktion zu Reihe gesucht: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:56 Mo 24.11.2014
Autor: sefh

Aufgabe
Zur Berechnung eines linearen DGL - Systems sollte über eine Reihenentwicklung eine 2x2 Matrix (Transitionsmatrix, Regelungstechnik) gebildet werden.
Die Einträge der Matrix sind somit selbst Reihen.
Für den ersten Eintrag ergibt sich z.B. die Reihe:

[mm] \alpha_{1,1} [/mm] = 1- [mm] \bruch{t^{2}}{2!}+2 \bruch{t^{3}}{3!}-3 \bruch{t^{4}}{4!}... [/mm]

Lt. Aufgabenstellung besteht die Reihe aus einer Kombination mit [mm] e^{t} [/mm] (bzw hier wohl [mm] e^{-t} [/mm] wegen dem Vorzeichenwechsel).

Wie kann diese Funktion bestimmt werden (ausser Raten und Probieren]

--
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
e - Funktion zu Reihe gesucht: Antwort
Status: (Antwort) fertig Status 
Datum: 16:31 Mo 24.11.2014
Autor: abakus


> Zur Berechnung eines linearen DGL - Systems sollte über
> eine Reihenentwicklung eine 2x2 Matrix (Transitionsmatrix,
> Regelungstechnik) gebildet werden.
> Die Einträge der Matrix sind somit selbst Reihen.
> Für den ersten Eintrag ergibt sich z.B. die Reihe:

>

> [mm]\alpha_{1,1}[/mm] = 1- [mm]\bruch{t^{2}}{2!}+2 \bruch{t^{3}}{3!}-3 \bruch{t^{4}}{4!}...[/mm]

>

> Lt. Aufgabenstellung besteht die Reihe aus einer
> Kombination mit [mm]e^{t}[/mm] (bzw hier wohl [mm]e^{-t}[/mm] wegen dem
> Vorzeichenwechsel).

Hallo,
neben den für die Reihenentwicklung von [mm] $e^{-t}$ [/mm] typischen Werten treten auch noch Faktoren vor den Brüchen auf, die das Gesamtbild stören.
Sind die Faktoren überhaupt richtig? Von rechts nach links gelesen sind das ..., -3,+2, -1, 0 (das erklärt den fehlenden Anteil von [mm] $t^1$), [/mm] und davor steht tatsächlich +1?
Gruß Abakus
>

> Wie kann diese Funktion bestimmt werden (ausser Raten und
> Probieren]

>

> --
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Bezug
                
Bezug
e - Funktion zu Reihe gesucht: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:07 Mo 24.11.2014
Autor: sefh

Hallo, ja die Faktoren sind richtig, die ergeben sich durch die Entwicklung der Transitionsmatrix. Es müsste sich also um eine Potenzreihe mit der e Funktion handeln..

Bezug
                        
Bezug
e - Funktion zu Reihe gesucht: Antwort
Status: (Antwort) fertig Status 
Datum: 17:27 Mo 24.11.2014
Autor: abakus

Hallo,
dein Ableitung deiner Reihe ist [mm]-t +\frac{t^2}{1!}  -\frac{t^3}{2!}  +\frac{t^4}{3!} -...}=-t*(1 -\frac{t}{1!}  +\frac{t^2}{2!}  -\frac{t^3}{3!} -...)=-t(e^{-t})[/mm].
Bilde davon die Stammfunktion...
Gruß Abakus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]