matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-Funktionene- Funktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Exp- und Log-Funktionen" - e- Funktion
e- Funktion < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

e- Funktion: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 18:47 Mi 09.12.2009
Autor: jusdme

Aufgabe
e * x + e^-x = 0

Lösen Sie nach x auf.

        
Bezug
e- Funktion: so gehts
Status: (Antwort) fertig Status 
Datum: 18:48 Mi 09.12.2009
Autor: Adamantin

eigener Ansatz? eigene Ideen? gar keine? falsch gelesen sorry, moment

also sofern du meinst $ [mm] e*x+e^{-x}$, [/mm] kannst du so vorgehen:

Also da du hier im Grunde eine GLeichung der Form [mm] e^x=x [/mm] hast, kannst du das nicht mit numerischen Mitteln sinnvoll lösen, sondern musst zu Annäherungslösungen wie dem Netwton'schen Iterationsverfahren greifen, sprich, du musst die NST abschätzen

neuer Ansatz, achtung mit den Vorzeichen haha
Ich bekomme es noch auf die Form:

[mm] $e*x=-\bruch{1}{e^x} [/mm] $
[mm] $x=-\bruch{1}{e^{x+1}}$ [/mm]
[mm] $-x=+\bruch{1}{e^{x+1}}$ [/mm]
$ln(-x)=ln(1)-(x+1)$
$ln(-x)=-x-1$

Nun sehen wir das Gegenteil, da der ln(x) nur für x>0 gilt, muss hier x<0, also negativ sein, damit eine Lösung existiert. Hier kann man mit Probieren auch schnell auf -1 kommen, ansonsten wächst x viel zu schnell im Vergleich zu ln(x)



ok ich muss nen Rechenfehler gemacht haben, die Lösung lautet x=-1, aber ich schaue noch nach, wo ich falsch gedacht habe!

Offenbar bringt dir Umformen hier wirklich nichts, man kann es nur "raten", das geht hier ganz gut, dann sieht man -1 als Lösung recht schnell, oder man macht es mit dem erwähnten Näherungsverfahren, die Umformung in den ln(x) müsste korrekt sein und liefert für -1 eine def.-Lücke, daher bringt das nix ^^

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]