matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-Funktionene-Funktionen ableiten
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Exp- und Log-Funktionen" - e-Funktionen ableiten
e-Funktionen ableiten < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

e-Funktionen ableiten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:41 Di 08.12.2009
Autor: la_vida

Aufgabe
Bestimme zu folgenden Funktionen jeweils f' und f''.
a) [mm] f(x)=x*e^x [/mm]
b) f(x)=x*e^-x
c) [mm] f(x)=(2-x)e^x [/mm]

Hallo ihr Lieben,
mal wieder eine Frage, wegen meiner Unsicherheiten.
Könnte jemand bitte über meine Aufgaben drüber schauen und mir sagen, ob's so stimmt? Das wäre super!

a) [mm] f'(x)=e^x+xe^x [/mm]
[mm] f''(x)=2e^x+xe^x [/mm]
b) f'(x)=e^-x+x(-e^-x)
f''(x)=-2e^-x+xe^-x
c) [mm] f'(x)=e^x+xe^x [/mm]
[mm] f''(x)=2e^x+xe^x [/mm]

Danke :-)

        
Bezug
e-Funktionen ableiten: Antwort
Status: (Antwort) fertig Status 
Datum: 21:54 Di 08.12.2009
Autor: MathePower

Hallo la_vida,

> Bestimme zu folgenden Funktionen jeweils f' und f''.
>  a) [mm]f(x)=x*e^x[/mm]
>  b) f(x)=x*e^-x
>  c) [mm]f(x)=(2-x)e^x[/mm]
>  Hallo ihr Lieben,
>  mal wieder eine Frage, wegen meiner Unsicherheiten.
>  Könnte jemand bitte über meine Aufgaben drüber schauen
> und mir sagen, ob's so stimmt? Das wäre super!
>  
> a) [mm]f'(x)=e^x+xe^x[/mm]
>  [mm]f''(x)=2e^x+xe^x[/mm]


[ok]


>  b) f'(x)=e^-x+x(-e^-x)
>  f''(x)=-2e^-x+xe^-x


[mm]f'\left(x\right)=e^{-x}+x*\left(-e^{-x}\right)[/mm]

[mm]f''\left(x\right)=\left(-2\right)*e^{-x}+x*e^{-x}[/mm]


[ok]


>  c) [mm]f'(x)=e^x+xe^x[/mm]
>  [mm]f''(x)=2e^x+xe^x[/mm]


Diese Ableitungen mußt Du nochmal nachrechnen.


>  
> Danke :-)  


Gruss
MathePower

Bezug
                
Bezug
e-Funktionen ableiten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:14 Di 08.12.2009
Autor: la_vida

Danke, wenn ich mich nicht irre, dann hatte ich einen Vorzeichenfehler und die Ableitungen müssten folgendermaßen heißen:

[mm] f'(x)=e^x-xe^x [/mm]
[mm] f''(x)=-xe^x [/mm]

Stimmt das?

Bezug
                        
Bezug
e-Funktionen ableiten: Antwort
Status: (Antwort) fertig Status 
Datum: 22:27 Di 08.12.2009
Autor: Herby

Hallo,

> Danke, wenn ich mich nicht irre, dann hatte ich einen
> Vorzeichenfehler und die Ableitungen müssten
> folgendermaßen heißen:
>  
> [mm]f'(x)=e^x-xe^x[/mm]
>  [mm]f''(x)=-xe^x[/mm]
>  
> Stimmt das?

nein, leider nicht - bei der Produktregel musst du einmal den ersten Faktor ableiten und der zweite bleibt bestehen und dann den zweiten ableiten und der erste bleibt bestehen. Deine beiden Faktoren lauten [mm] \blue{(2-x)} [/mm] und [mm] \red{e^{x}} [/mm]

[mm] \left[\blue{u}*\red{v}\right]'=\blue{u'}*\red{v}+\blue{u}*\red{v'} [/mm]

also

[mm] \left[\blue{(2-x)}*\red{e^{x}}\right]'=\blue{...}*\red{...}+\blue{...}*\red{...} [/mm]


Liebe Grüße
Herby

Bezug
                                
Bezug
e-Funktionen ableiten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:34 Di 08.12.2009
Autor: la_vida

Ah, ok alles klar, ich bin da ganz falsch rangegangen.
Danke, jetzt weiß ich bescheid.

Bezug
        
Bezug
e-Funktionen ableiten: Tipp.
Status: (Antwort) fertig Status 
Datum: 22:34 Di 08.12.2009
Autor: M.Rex

Hallo

Wenn du Funktionen ableitest, dessen einer Faktor aus einem Term der Form [mm] e^{\Box} [/mm] besteht, solltest du in der Ableitung nochmal ausklammern, du ersparst dir so einiges an Rechnerei für die nächsten Ableitungen. Ausserdem ist es dann einfacher, die Ableitungen =0 zu setzen, um Extrem- oder Wendestellen zu finden.

Beispiel:

[mm] f(x)=x^{2}*e^{-\bruch{1}{2}x^{2}} [/mm]
[mm] f'(x)=2x*e^{-\bruch{1}{2}x^{2}}+x^{2}*\left(-x*e^{-\bruch{1}{2}x^{2}}\right) [/mm]
[mm] =e^{-\bruch{1}{2}x^{2}}*\left(2x-x^{3}\right) [/mm]
[mm] f''(x)=e^{-\bruch{1}{2}x^{2}}*\left(2-3x^{2}\right)+\left(2x-x^{3}\right)*\left(-x*e^{-\bruch{1}{2}x^{2}}\right) [/mm]
[mm] =e^{-\bruch{1}{2}x^{2}}*\left(2-3x^{2}+(-2x+x^{4})\right) [/mm]
[mm] =e^{-\bruch{1}{2}x^{2}}*\left(2-5x^{2}+x^{4}\right) [/mm]

Marius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]