matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-Funktionene-Funktion - 2. + 3. Ableitung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Exp- und Log-Funktionen" - e-Funktion - 2. + 3. Ableitung
e-Funktion - 2. + 3. Ableitung < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

e-Funktion - 2. + 3. Ableitung: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 18:42 Mo 26.02.2007
Autor: laleluli

Aufgabe
Gegeben ist die Funktion:

[mm] f(x)=x*e^{k*x} [/mm]

Bilde die 1., 2. und 3. Ableitungsfunktion.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Die erste Ableitungsfunktion habe ich mithilfe der Produktregel ermitteln können.

[mm] f'(x)=x*k*e^{k*x}*e^{k*x} [/mm]
bzw.
[mm] f'(x)=e^{k*x}*({x*k+1}) [/mm]

Allerdings weiß ich jetzt nicht, welche Regel (vermutlich wieder Produktregel, aber welches sind die einzelnen Produkte?) ich nun anwenden soll.

        
Bezug
e-Funktion - 2. + 3. Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:50 Mo 26.02.2007
Autor: Stefan-auchLotti

[mm] $\bffamily \text{Hi.}$ [/mm]

> Gegeben ist die Funktion:
>  
> [mm]f(x)=x*e^{k*x}[/mm]
>  
> Bilde die 1., 2. und 3. Ableitungsfunktion.
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Die erste Ableitungsfunktion habe ich mithilfe der
> Produktregel ermitteln können.
>  
> [mm]f'(x)=x*k*e^{k*x}*e^{k*x}[/mm]
>  bzw.
>  [mm]f'(x)=e^{k*x}*({x*k+1})[/mm]
>  

[mm] $\bffamily \text{Also, die beiden sind nicht dieselben. Beim ersten hast du dich vermutlich vertippt, da muss es heißen:}$ [/mm]

[mm] $\bffamily f'(x)=x*k*e^{k*x}\red{+}e^{k*x}$ [/mm]

[mm] $\bffamily \text{Der zweite Term ist wieder korrekt.}$ [/mm]

> Allerdings weiß ich jetzt nicht, welche Regel (vermutlich
> wieder Produktregel, aber welches sind die einzelnen
> Produkte?) ich nun anwenden soll.  

[mm] $\bffamily \text{Richtig, wieder die Produktregel. Nicht kompliziert denken -- ein Teil des Produktes ist }e^{kx}\text{ und einer }kx+1\text{. Jetzt einfach wieder, wie vorher, die Regel anwenden.}$ [/mm]

[mm] $\bffamily \text{Grüße, Stefan.}$ [/mm]

Bezug
                
Bezug
e-Funktion - 2. + 3. Ableitung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:01 Mo 26.02.2007
Autor: laleluli

Vielen Dank, Stefan! Jetzt habe ich es hinbekommen!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]