matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-Funktionene-Funktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Exp- und Log-Funktionen" - e-Funktion
e-Funktion < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

e-Funktion: Idee
Status: (Frage) beantwortet Status 
Datum: 21:51 Fr 22.04.2005
Autor: anni-1986

hi,

ich brauche zwei e-funktionen, die sich in einem punkt schneiden. das wars auch schon.

ps: es können auch mehrere paare angegeben werden, dann kann ich auch mehr üben ;-)

gruß anni

        
Bezug
e-Funktion: Beispiele
Status: (Antwort) fertig Status 
Datum: 21:58 Fr 22.04.2005
Autor: Loddar

Hallo Anni!


> ich brauche zwei e-funktionen, die sich in einem punkt
> schneiden. das wars auch schon.

Egal, welcher Punkt?


Wie wäre es dann mit ...  [mm] $y_1(x) [/mm] \ = \ [mm] e^x$ [/mm]    und    [mm] $y_2(x) [/mm] \ = \ [mm] e^{-x}$ [/mm]   ??


Gruß
Loddar


Bezug
                
Bezug
e-Funktion: Idee
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:22 Sa 23.04.2005
Autor: anni-1986

hi loddar,

es ist egal, welcher punkt. Ich will nur das berechnen des gemeinsamen schnittpunktes mit e-funktionen üben.  

hast du noch weitere?

gruß anni

Bezug
                
Bezug
e-Funktion: Idee
Status: (Frage) beantwortet Status 
Datum: 10:51 Sa 23.04.2005
Autor: anni-1986

hi loddar,

hast du noch weitere?

gruß anni

Bezug
                        
Bezug
e-Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 11:18 Sa 23.04.2005
Autor: schneckchen_moeh

Hallo!

Hoffe, es ist nicht zu kompliziert, aber folgende schneiden sich nur in einem Punkt:

[mm]y=(t-e^x)^2[/mm]

Je nach dem, was du für t einsetzt, schneiden sich die Kurven in einem Punkt ( z. B. t=0,5 oder t=0 oder t=1 oder t=2... )

LG Isi

Bezug
                                
Bezug
e-Funktion: Frage
Status: (Frage) beantwortet Status 
Datum: 16:53 Sa 23.04.2005
Autor: anni-1986

hi isi,

ich möchte gerne wissen, ob ich das so richtig mache. ich bestimme zum ersten mal mit zwei e-funktionen den gemeinsamen punkt.

[mm] (1-e^x)^2=(2-e^x)^2 [/mm]

[mm] 1-2e^x+e^{2x}=4-4e^x+e^{2x} [/mm]

[mm] -3+2e^x=0 [/mm]

[mm] 2e^x=3 [/mm]

[mm] e^x= \bruch{3}{2} [/mm]       lg
              
[mm] x*lge=lg\bruch{3}{2} [/mm]

x=0,41

gruß anni

Bezug
                                        
Bezug
e-Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 17:02 Sa 23.04.2005
Autor: Max

Passt. Ich habe $x [mm] \approx 0,405\ldots$ [/mm] raus. Max

Bezug
                                        
Bezug
e-Funktion: Natürlicher Logarithmus
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:09 Sa 23.04.2005
Autor: Loddar

Hi ...


> [mm]e^x= \bruch{3}{2}[/mm]       lg
> [mm]x*lge=lg\bruch{3}{2}[/mm]

Auch hier gilt: Du "sparst" einen Schritt bei Verwendung des natürlichen Logarithmus' [mm] $\ln(x)$ [/mm] ...

Auch dann lautet Dein Ergebnis:  $ x \ = \ [mm] \ln\left(\bruch{3}{2}\right) [/mm] \ [mm] \approx [/mm] \ 0,41$


Gruß
Loddar


Bezug
                        
Bezug
e-Funktion: Ein haben wir noch ...
Status: (Antwort) fertig Status 
Datum: 12:22 Sa 23.04.2005
Autor: Loddar

Hallo Annika!


[mm] $y_1(x) [/mm] \ = \ [mm] e^{-x^2}$ [/mm]

[mm] $y_2(x) [/mm] \ = \ [mm] e^{1-2x}$ [/mm]


Viel Spaß [grins] ...


Teile uns doch ruhig mal Deine Ergebnisse mit.

Gruß
Loddar


Bezug
                                
Bezug
e-Funktion: Frage
Status: (Frage) beantwortet Status 
Datum: 16:41 Sa 23.04.2005
Autor: anni-1986

hi loddar,

bin mal gespannt, ob ich das richtig gemacht habe. ich schreibe nämlich nächste woche abi und es kommen e-funktionen dran (leider keine normalen funktion :-( ) und mit diesen e-funktionen müssen wir steuern und subventionen berechnen. unser lehrer gibt uns leider keine übungen mit e-funktionen.

also:
[mm] e^{-x^2}=e^{1-2x} [/mm]                              lg
[mm] -x^2*lge=(1-2x)*lge [/mm]                               :lge
[mm] -x^2=1-2x [/mm]                                                +2x;-1
[mm] -x^2+2x-1=0 [/mm]

dann ganz normal mit pq-formel weiterrechnen.
x=2,41
x=-0,41

gruß anni

Bezug
                                        
Bezug
e-Funktion: Korrektur
Status: (Antwort) fertig Status 
Datum: 16:50 Sa 23.04.2005
Autor: Loddar

Hallo Anni!


>  [mm]e^{-x^2}=e^{1-2x}[/mm]                              lg
>  [mm]-x^2*lge=(1-2x)*lge[/mm]                               :lge

[ok] Ist richtig, Du könntest aber einen Schritt sparen, wenn Du den natürlichen Logarithmus [mm] $\ln(x)$ [/mm] verwenden würdest.
Schließlich ist das der Logarithmus zur Basis $e$:   [mm] $\ln(x) [/mm] \ := \ [mm] \log_e(x)$ [/mm]


>  [mm]-x^2=1-2x[/mm]          | +2x -1
>  [mm]-x^2+2x-1=0[/mm]

[daumenhoch]


> dann ganz normal mit pq-formel weiterrechnen.

[notok] Du darfst die MBp/q-Formel nur anwenden auf die sog. "Normalform":  [mm] $\red{1}*x^2 [/mm] + p*x + q \ = \ 0$

Für unsere Aufgabe also zunächst mit $(-1)$ multiplizieren ...


Gruß
Loddar


Bezug
                                                
Bezug
e-Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:57 Sa 23.04.2005
Autor: anni-1986

hi loddar,

alles klar. das mit -1 multiplizieren habe ich auch gemacht, ich hatte nur keine lust alles aufzuschreiben ;-)

danke

gruß anni

Bezug
                                                        
Bezug
e-Funktion: Aber ...
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:01 Sa 23.04.2005
Autor: Loddar

.


... dann solltest Du auch andere Ergebnisse für [mm] $x_S$ [/mm] erhalten, als oben von Dir angegeben.

Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]