matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-Funktionendurchrechnen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Exp- und Log-Funktionen" - durchrechnen
durchrechnen < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

durchrechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:04 Sa 24.05.2008
Autor: puldi

Hallo,

(-1+ln(x))² + 2 (-1+ln(x)) = 0

wie kann ich das ausrechdnen?

Danke für die Tips!

        
Bezug
durchrechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:10 Sa 24.05.2008
Autor: schachuzipus

Hallo puldi,

> Hallo,
>  
> (-1+ln(x))² + 2 (-1+ln(x)) = 0
>  
> wie kann ich das ausrechdnen?

Na, was würdest du denn intuitiv versuchen?

Doch bestimmt, die Klammern auszurechnen bzw. aufzulösen.

Mache das mal, achte auf die binom. Formel bei der ersen Klammer.

Da wird sich ne Menge wegheben, den Rest schaffst du dann spielend...

>  
> Danke für die Tips!


Gruß

schachuzipus

Bezug
                
Bezug
durchrechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:27 Sa 24.05.2008
Autor: puldi

Hallo,

ich komme auf:

ln(x)² + 4ln(x) - 1

Stimmt das und wie gehts weiter?

Danke!

Bezug
                        
Bezug
durchrechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:30 Sa 24.05.2008
Autor: schachuzipus

Hallo nochmal,

> Hallo,
>  
> ich komme auf:
>  
> ln(x)² + 4ln(x) - 1
>  
> Stimmt das und wie gehts weiter?

Nee, das stimmt nicht, du hast bei der ersten Klammer die

2. binom. Formel, du bekommst da also $... [mm] -2\ln(x) [/mm] ...$

Das hebt sich mit dem [mm] 2\ln(x) [/mm] aus der anderen Klammer weg

Rechne also nochmal nach und stelle die Gleichung nach [mm] $\ln^2(x)$ [/mm] um.

Die kannst du dann einfach lösen ...


Gruß

schachuzipus

>  
> Danke!


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]