matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTopologie und Geometriedurch metrik ind.Topologie
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Topologie und Geometrie" - durch metrik ind.Topologie
durch metrik ind.Topologie < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

durch metrik ind.Topologie: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:40 Di 23.10.2007
Autor: pusteblume86

Hallo ihr.

Ich habe folgendes:

Sei (X,d)  metrsicher Raum mit der durch die Metrik induzierte Topologie.
Zeigen sie: [mm] \forall x_0 \in [/mm] X [mm] :x\mapsto d(x_0,x) [/mm] ist stetig.

Ich weiß, dass eine Abbildung zwischen Metrsichen Räumen stetig sit, wenn die Urbilder offener Mengen offen sind, aber ich weiß nicht wie ich da dran gehe.

Kann mir evtl jemand helfen?

Lg Sandra

        
Bezug
durch metrik ind.Topologie: Antwort
Status: (Antwort) fertig Status 
Datum: 22:57 Di 23.10.2007
Autor: andreas

hi

eine abbildung ist doch in dieser (von der metik induzierten) topologie genau dann stetig wenn sie steteig bezüglich der metrik ist und das ist hier sehr viel leichter nachzuprüfen. dazu muss du nur die "umgekehrte dreiecksungleichung" anwenden.

grüße
andreas

Bezug
                
Bezug
durch metrik ind.Topologie: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:01 Mi 24.10.2007
Autor: pusteblume86

Hey danke schonmal für die schnell Antwort!

ich weiß was die Dreiecksungleichung ist, aber was soll ich hier mit der umgekehrten Dreiecksungleichung anfangen?

[mm] d(x,x_0)\le d(x,z)+d(z,x_0), [/mm] gilt doch oder?
Wahrscheinlich muss man [mm] d(x,x_0) [/mm] so auseinanderziehen, dass man die dreiecksungleichung anwenden kann, oder? [mm] d(x_0,x)+d(x,x)\ge d(x_0,x), [/mm] aber erstens weiß ich nicht obs stimmt und ob es hilft!

Hoffe mir kann da noch jemand helfen..

Lg sandra



Bezug
                        
Bezug
durch metrik ind.Topologie: Antwort
Status: (Antwort) fertig Status 
Datum: 11:04 Mi 24.10.2007
Autor: statler

Hallo Sandra!

> ich weiß was die Dreiecksungleichung ist, aber was soll ich
> hier mit der umgekehrten Dreiecksungleichung anfangen?

Stetigkeit einer Funktion bedeutet doch, daß die Funktionswerte, also die Bilder, dicht beieinander liegen, wenn nur die Argumente hinreichend nahe beieinander sind. [mm] x_{0} [/mm] ist ein beliebiger, aber fester Punkt in deinem metrischen Raum. x und y seien jetzt 2 Argumente. Dann sind die Bilder [mm] d(x_{0}, [/mm] x) und [mm] d(x_{0}, [/mm] y) reelle Zahlen. Ihr Abstand ist [mm] |d(x_{0}, [/mm] x) - [mm] d(x_{0}, [/mm] y)|. Der Abstand der Argumente ist natürlich d(x, y). Und damit beginnt die Abschätzerei. Fang mal an! Vielleicht machst du vorher auch noch eine kleine Skizze zur Veranschaulichung.

Gruß aus HH-Harburg
Dieter

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]