matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer Veränderlichendoppelintegral
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Reelle Analysis mehrerer Veränderlichen" - doppelintegral
doppelintegral < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

doppelintegral: grenzen
Status: (Frage) beantwortet Status 
Datum: 22:02 So 25.03.2012
Autor: summerlove

Aufgabe
Berechnen Sie für die Funktion f(x,y) = xy das Doppelintegral über das Gebiet B. Vereinfachen Sie soweit wie möglich.

y= [mm] 6-(x-2)^{2} [/mm]
y= [mm] (x-2)^{2}-4 [/mm]

Hallo,

ich habe Probleme bei der Aufgabe, weil ich nicht weiß welche Grenzen ich für y einsetze.

also meine Grenzen für x habe ich ausgerechnet, indem ich y=y gesetzt habe.

Nach dem Ausklammern hatte ich


[mm] -x^{2}+4x+2=x^{2}-4x [/mm]

[mm] -2x^{2}+8x+2=0 [/mm]
[mm] -x^{2}+4x+1=0 [/mm]

dann hatte ich mit der quadratischen Ergänzung zwei Ergebnisse

x= [mm] 2+\wurzel{5} [/mm] und
x= [mm] 2-\wurzel{5} [/mm]

das sind dann meine Grenzen für x

dann hätte ich als Doppelintegral

[mm] \integral_{2-\wurzel{5}}^{2+\wurzel{5}}\integral_{x^{2}-4x}^{-x^{2}+4x+2}{f(x) dx}{(x*y) dx dy} [/mm]

nach dem ersten integrieren mit eingesetzten Grenzen hatte ich dann raus

[mm] \bruch{1}{4}*\integral_{x^{2}-4x}^{-x^{2}+4x+2} ((\wurzel{5}+2)^{2}*y)-y*{(2-\wurzel{5})^{2}}dy [/mm]

Wenn ich jetzt nochmal integriere, weiß ich aber nicht was für Werte ich für y einsetzen soll, kann mir da jemand helfen?
Ich dachte zuerst ich setze in y, meine x-Werte ein, aber irgendwie komme ich nicht auf die Lösung.

LG summerlove

        
Bezug
doppelintegral: Antwort
Status: (Antwort) fertig Status 
Datum: 22:15 So 25.03.2012
Autor: MathePower

Hallo summerlove,

> Berechnen Sie für die Funktion f(x,y) = xy das
> Doppelintegral über das Gebiet B. Vereinfachen Sie soweit
> wie möglich.
>  
> y= [mm]6-(x-2)^{2}[/mm]
>  y= [mm](x-2)^{2}-4[/mm]
>  Hallo,
>  
> ich habe Probleme bei der Aufgabe, weil ich nicht weiß
> welche Grenzen ich für y einsetze.
>  
> also meine Grenzen für x habe ich ausgerechnet, indem ich
> y=y gesetzt habe.
>  
> Nach dem Ausklammern hatte ich
>  
>
> [mm]-x^{2}+4x+2=x^{2}-4x[/mm]
>  
> [mm]-2x^{2}+8x+2=0[/mm]
>  [mm]-x^{2}+4x+1=0[/mm]
>  
> dann hatte ich mit der quadratischen Ergänzung zwei
> Ergebnisse
>  
> x= [mm]2+\wurzel{5}[/mm] und
>  x= [mm]2-\wurzel{5}[/mm]
>  
> das sind dann meine Grenzen für x
>  
> dann hätte ich als Doppelintegral
>  
> [mm]\integral_{2-\wurzel{5}}^{2+\wurzel{5}}\integral_{x^{2}-4x}^{-x^{2}+4x+2}{f(x) dx}{(x*y) dx dy}[/mm]
>  
> nach dem ersten integrieren mit eingesetzten Grenzen hatte
> ich dann raus
>  
> [mm]\bruch{1}{4}*\integral_{x^{2}-4x}^{-x^{2}+4x+2} ((\wurzel{5}+2)^{2}*y)-y*{(2-\wurzel{5})^{2}}dy[/mm]
>  
> Wenn ich jetzt nochmal integriere, weiß ich aber nicht was
> für Werte ich für y einsetzen soll, kann mir da jemand
> helfen?
>  Ich dachte zuerst ich setze in y, meine x-Werte ein, aber
> irgendwie komme ich nicht auf die Lösung.
>  


Das Doppelintegral lautet doch:

[mm]\integral_{2-\wurzel{5}}^{2+\wurzel{5}}\left(\integral_{x^{2}-4x}^{-x^{2}+4x+2}{x*y \ dy} \right) \ dx}[/mm]

Damit ist zuerst

[mm]\integral_{x^{2}-4x}^{-x^{2}+4x+2}{x*y \ dy} [/mm]

zu berechnen.


> LG summerlove


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]