matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebradiskrete untergr von S^1
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Algebra" - diskrete untergr von S^1
diskrete untergr von S^1 < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

diskrete untergr von S^1: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:46 Mo 23.01.2012
Autor: clee

Aufgabe
Jede diskrete Untergruppe von [mm] $S^1$ [/mm] ist endlich zyklisch.

der beweis ist aus einem buch aber ich verstehe die entscheidende folgerung nicht.

Sei [mm] $\Gamma$ [/mm] eine diskrete Untergruppe von [mm] $S^1=\{z\in\mathbb{C}|z=e^{i\varphi}\}$. [/mm] Wegen Diskretheit existiert [mm] $z=e^{i\varphi_0}\in\Gamma$ [/mm] mit minimalem [mm] $\varphi_0$ [/mm] und ein [mm] $m\in\IZ$ [/mm] mit [mm] $m\varphi_0=2\pi$, [/mm] anderenfalls bekommen wir einen Widerspruch zur Wahl von [mm] $\varphi_0$. [/mm]

alles schön und gut, aber wo ist der widerspruch wenn es das $m$ nicht gibt???

lg clee

        
Bezug
diskrete untergr von S^1: Antwort
Status: (Antwort) fertig Status 
Datum: 16:10 Mo 23.01.2012
Autor: Teufel

Hi!

Wenn es solch ein $m$ nicht gibt, dann guck dir mal ein maximales $m'$ an, sodass noch $m' [mm] \varphi [/mm] _0 < 2 [mm] \pi$ [/mm] ist. Addierst du dann nochmal  [mm] $\varphi [/mm] _0$ drauf, dann hast du wieder ein Element in [mm] $\Gamma$, [/mm] das aber einen kleineren Winkel als [mm] $\varphi [/mm] _0$ hat.

Mal dir das am besten mal auf!

Reicht das?

Bezug
                
Bezug
diskrete untergr von S^1: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:48 Mo 23.01.2012
Autor: clee

jetzt ists mir klar ... hätte ich ja auch selbst draufkommen können.

vielen dank :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]