matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Sonstigesdiskret <-> abzählbar
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Sonstiges" - diskret <-> abzählbar
diskret <-> abzählbar < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

diskret <-> abzählbar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:06 Di 02.11.2010
Autor: bezauberndejeany

Hallo zusammen,
ich verstehe den Unterschied zwischen diskret und abzählbar um ehrlich zu sein nicht so ganz. Ich dachte bisher, das sei das gleiche :(
Kann mir jemand ein Beispiel geben?

Hab da noch ne Frage: ist eine diskrete Teilmenge von [mm] \IC [/mm] immer abzählbar?
Wenn ja, wie könnte ich das beweisen?

Vielen Dank!

        
Bezug
diskret <-> abzählbar: Antwort
Status: (Antwort) fertig Status 
Datum: 17:25 Di 02.11.2010
Autor: fred97


> Hallo zusammen,
>  ich verstehe den Unterschied zwischen diskret und
> abzählbar um ehrlich zu sein nicht so ganz. Ich dachte
> bisher, das sei das gleiche :(
>  Kann mir jemand ein Beispiel geben?

Def.: Eine Menge A [mm] \subset \IC [/mm] heißt diskret in [mm] \IC, [/mm] wenn A keine Häufungspunkte in [mm] \IC [/mm] hat.

In diesem Fall ist A höchstens abzählbar.

So ist z.B. [mm] \IN [/mm] diskret in [mm] \IC [/mm]

          

Sei $A:= [mm] \{1/n: n \in \IN \}$ [/mm] . Dann ist A abzählbar, aber nicht diskret in [mm] \IC, [/mm] denn A hat den Häufungspunkt 0

>  
> Hab da noch ne Frage: ist eine diskrete Teilmenge von [mm]\IC[/mm]
> immer abzählbar?

Ja, sie ist endlich oder abzählbar unendlich


>  Wenn ja, wie könnte ich das beweisen?

Sei A eine in [mm] \IC [/mm] diskrete Teilmenge. Setze [mm] $A_n [/mm] := A [mm] \cap \{z \in \IC: |z| \le n \}$ [/mm]  (n [mm] \in \IN) [/mm]

Dann ist jedes [mm] A_n [/mm] beschränkt

Kann [mm] A_n [/mm] unendlich viele Elemente enthalten ? Nein, denn anderenfalls hätte [mm] A_n [/mm] , und damit auch A, eine Häufungspunkt !  (Bolzano-Weierstraß)

Also ist jedes [mm] A_n [/mm] höchstens endlich . Somit ist A höchstens abzählbar (warum ?)

FRED

>  
> Vielen Dank!


Bezug
                
Bezug
diskret <-> abzählbar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:18 Di 02.11.2010
Autor: bezauberndejeany

Erstmal vielen vielen vielen Dank!!! Mir ist aber noch was nicht klar:

> > Hab da noch ne Frage: ist eine diskrete Teilmenge von [mm]\IC[/mm]
> > immer abzählbar?
>  
> Ja, sie ist endlich oder abzählbar unendlich
>  
> Sei A eine in [mm]\IC[/mm] diskrete Teilmenge. Setze [mm]A_n := A \cap \{z \in \IC: |z| \le n \}[/mm]
>  (n [mm]\in \IN)[/mm]
> Dann ist jedes [mm]A_n[/mm] beschränkt
> Kann [mm]A_n[/mm] unendlich viele Elemente enthalten ? Nein, denn
> anderenfalls hätte [mm]A_n[/mm] , und damit auch A, eine
> Häufungspunkt !  (Bolzano-Weierstraß)

Warum hat dann auch A einen Häufungspunkt?

> Also ist jedes [mm]A_n[/mm] höchstens endlich . Somit ist A
> höchstens abzählbar (warum ?)

Ja, warum?
Es tut mir wirklich sehr leid, aber das verstehe ich noch nicht. Ich würde sicher noch länger drüber nachdenken, wenn ich die Antwort nicht schon bis morgen bräuchte :(


Bezug
                        
Bezug
diskret <-> abzählbar: Antwort
Status: (Antwort) fertig Status 
Datum: 07:52 Mi 03.11.2010
Autor: fred97


> Erstmal vielen vielen vielen Dank!!! Mir ist aber noch was
> nicht klar:
>  
> > > Hab da noch ne Frage: ist eine diskrete Teilmenge von [mm]\IC[/mm]
> > > immer abzählbar?
>  >  
> > Ja, sie ist endlich oder abzählbar unendlich
>  >  
> > Sei A eine in [mm]\IC[/mm] diskrete Teilmenge. Setze [mm]A_n := A \cap \{z \in \IC: |z| \le n \}[/mm]
> >  (n [mm]\in \IN)[/mm]

>  > Dann ist jedes [mm]A_n[/mm] beschränkt

>  > Kann [mm]A_n[/mm] unendlich viele Elemente enthalten ? Nein, denn

> > anderenfalls hätte [mm]A_n[/mm] , und damit auch A, eine
> > Häufungspunkt !  (Bolzano-Weierstraß)
>  
> Warum hat dann auch A einen Häufungspunkt?


Wenn [mm] A_n [/mm] den Häufungspunkt [mm] z_0 [/mm] hat, so bedeutet dies: in jeder Umgebung von [mm] z_0 [/mm] liegen unendlich viele Elemente aus [mm] A_n. [/mm] Da [mm] A_n [/mm] Teilmenge von A ist, folgt: in jeder Umgebung von [mm] z_0 [/mm] liegen unendlich viele Elemente aus A. Damit ist [mm] z_0 [/mm] HP von A

>  
> > Also ist jedes [mm]A_n[/mm] höchstens endlich . Somit ist A
> > höchstens abzählbar (warum ?)
>  
> Ja, warum?

Es ist doch $A= [mm] \bigcup_{n=1}^{\infty}A_n$ [/mm]

Eine abzählbare Vereinigung endlicher Mengen ist abzählbar !!!


FRED

>  Es tut mir wirklich sehr leid, aber das verstehe ich noch
> nicht. Ich würde sicher noch länger drüber nachdenken,
> wenn ich die Antwort nicht schon bis morgen bräuchte :(
>  


Bezug
                                
Bezug
diskret <-> abzählbar: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:16 Mi 03.11.2010
Autor: bezauberndejeany

Danke Fred, Du warst heute meine Rettung!
Liebe Grüße

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]