matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare Algebradirektes Produkt
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Lineare Algebra" - direktes Produkt
direktes Produkt < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

direktes Produkt: Verständnis
Status: (Frage) beantwortet Status 
Datum: 15:43 Do 17.02.2005
Autor: Reaper

Hallo
Satz und Definition: I sei eine Menge und K sei ein Körper. Für alle i in I sei [mm] V_{i} [/mm] ein Vektorraum über K. Auf dem direkten Produkt $(V,+) := [mm] x_{i in I} (V_{i},+) [/mm] $definieren wir
[mm] \lambda $(....,v_{i},...) [/mm] := (...., [mm] \lambda v_{i},..)$ [/mm]

Dann ist V ein Vektorraum über K, genannt das direkte Produkt der Vektorräume$ [mm] V_{i}$; [/mm] Bezeichnung: $V = [mm] x_{i in I} V_{i}$. [/mm]

Also ich stelle mir ja unter dem direkten Produkt einfach dasselbe vor wie untzer der direkten Summe. Wo ist genau der Unterschied bzw. mit was wird verknüpft? (mit +?)
Ich kann mir einfach keinen Unterschied zw. Produkt und Summe vorstellen.



        
Bezug
direktes Produkt: Antwort
Status: (Antwort) fertig Status 
Datum: 11:07 Fr 18.02.2005
Autor: Julius

Hallo Reaper!

Eine sehr gute und berechtigte Frage!

Sowohl direkte Summen als auch direkte Produkte basieren auf kartesischen Produkten, die Verknüpfung wird dabei komponentenweise definiert.

Im Falle eines endlichen kartesischen Produktes fallen die beiden Begriffe zusammen!

Der einzige wesentliche Unterschied zwischen den beiden tritt bei unendlichen Produkten bzw. Summen auf, wo das direkte Produkt aus allen Tupeln besteht, während die direkte Summe nur aus den Tupeln besteht, die für alle bis auf endlich viele Komponenten gleich 0 sind.

Viele Grüße
Julius

Bezug
                
Bezug
direktes Produkt: Zusatzfrage
Status: (Frage) beantwortet Status 
Datum: 16:42 Fr 18.02.2005
Autor: Reaper

Hallo

Bei der Definition des direkten Produktes fehlt da nicht was und zwar:
[mm] (........,v_{i},....) [/mm] + [mm] (....,v_{i}',....) [/mm] := [mm] (....,v_{i} [/mm] + [mm] v_{i}',......) [/mm] neben dem verlambdafachen?


Der einzige wesentliche Unterschied zwischen den beiden tritt bei unendlichen Produkten bzw. Summen auf, wo das direkte Produkt aus allen Tupeln besteht, während die direkte Summe nur aus den Tupeln besteht, die für alle bis auf endlich viele Komponenten gleich 0 sind.

Es ist klar dass viele 0en in der Summe vorhanden sein müssen da praktisch jeder Unterraum durch den 0 - Vektor geht und der 0-Vektor selbst ein Unterraum ist. Sind dann die endlich vielen Komponenten z.b. bei einer Gerade die durch den Nullvektor geht und ein Unterraum von  [mm] \IR^{2} [/mm] ist, die Punkte der Geraden die nicht gleich dem Nullvektor sind?




Bezug
                        
Bezug
direktes Produkt: Formale Definition
Status: (Antwort) fertig Status 
Datum: 10:01 So 20.02.2005
Autor: manil

Hallo Reaper.

Klar, Du brauchst für einen Vektorraum eine Addition (innere Verknüpfung) und eine sogenannte äußere Verknüpfung (Produkt mit den "Skalaren"aus dem zugrundeliegenden Körper).


Seien [mm] \{(V_i, +)\}_{i \in I}[/mm] Vektorräume über dem Körper K
Es ist das direkte Produkt [mm](V,+)[/mm] definiert als
[mm]V:=\produkt_{i \in I} V_i= \left\{ (v_1,v_2,\ldots,v_i, \ldots) \big| v_i \in V_i \right\} [/mm]
mit den Verknüpfungen
[mm] ( \ldots, v_i , \ldots)+(\ldots, w_i, \ldots)=( \ldots, v_i+w_i, \ldots)[/mm]
[mm] \lambda* (\ldots, v_i, \ldots) =(\ldots, \lambda* v_i, \ldots) , \forall \lambda \in K[/mm]

Die direkte Summe [mm](W,+)[/mm] ist definiert als
[mm] W:=\bigoplus_{i \in I} V_i=\left\{(v_1,v_2,\ldots,v_i, \ldots) \in \produkt_{i \in I} V_i \big| v_i =0 \mbox{ für fast alle } i \in I\right \}[/mm]

Die Verknüpfungen werden bei der direkten Summe aus dem direkten Produkt übernommen (klar, dann bleiben wir in der direkten Summe, das ist leicht zu überlegen).

Ist nun I endlich, so gilt also [mm]\bigoplus_{i \in I} V_i=\produkt_{i \in I} V_i[/mm]

Grüße
Manil



Bezug
                                
Bezug
direktes Produkt: Zusatz
Status: (Frage) beantwortet Status 
Datum: 13:55 Mo 21.02.2005
Autor: Reaper

Hallo
Tja es geht wieder einmal um eine Def. die ich mir nicht so recht vorstellen kann.
Sei [mm] 1.)_{K}V [/mm] =  [mm] \IR^{ \IN} [/mm] , S = {(1,0,0,..),(0,1,0,..),(0,0,1,0,..),....}. L(S) = [mm] \IR ^{(\IN)} [/mm] und nicht [mm] \IR ^{\IN}! [/mm]
Im Klartext heißt dass ja wohl dass die lineare Hülle der Teilmenge S die direkte Summe  und nicht das direkte Produkt ergibt.
Schreibweise: [mm] \IR ^{(\IN)},\IR ^{\IN} [/mm]
Sind alle [mm] V_{i} [/mm] gleich (z.b.: [mm] V_{i} [/mm] = W) so schreibt man statt dem direkten Produkt bzw. der direkten Summe kurz [mm] W^{I} [/mm] bzw. [mm] W^{(I)}. [/mm] Ist W der Vektorraum _{K}K , so heißen die Elemente von [mm] K^{ \IN} [/mm] = [mm] {(k_{1},...k_{n})|alle k_{i} in K} [/mm] auch formale Potenzreihen, die von [mm] K^{( \IN)} [/mm] = [mm] {k_{1},...k_{n},0,0,...)|n in \IN, alle k_{i} in K} [/mm] auch Polynome.

Meine Frage lautet nun wie ich etwa bei dem obigen Bsp. sehen kann dass alle [mm] V_{i} [/mm] gleich sind und bei direkten Summe auch noch 0en in der Menge dran hängen.

Bezug
                                        
Bezug
direktes Produkt: Antwort
Status: (Antwort) fertig Status 
Datum: 16:04 Di 22.02.2005
Autor: Julius

Hallo Reaper!

Eigentlich gilt:

[mm] $L(S)=\bigoplus\limits_{i \in \IN} \IR_i$ [/mm]

(denn beide Mengen enthalten alle Folgen, für die fast alle Folgenglieder verschwinden)

mit

[mm] $\IR_i:=\{(v_n)_{n \in \IN}\, : \, v_n=v \cdot \delta_{in},\, v \in \IR\}$. [/mm]

Da wir aber für alle $i [mm] \in \IN$ [/mm] eine kanonische Isomorphie

[mm] $\begin{array}{ccc} \IR & \to & \IR_i \\[5pt] v & \mapsto & (v \cdot \delta_{in})_{n \in \IN} \end{array}$ [/mm]

haben, kann man beruhigt auch

$L(S) = [mm] \bigoplus\limits_{i \in \IN} \IR [/mm] = [mm] \IR^{(\IN)}$ [/mm]

schreiben.

Viele Grüße
Julius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]