matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-Analysisdirekter Beweis
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Schul-Analysis" - direkter Beweis
direkter Beweis < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

direkter Beweis: Frage
Status: (Frage) beantwortet Status 
Datum: 12:20 Mo 11.07.2005
Autor: scratchy

Hi,

ich habe ein Frage zu einem bekannten Beispiel zum direkten Beweisverfahren.
und zwar s(n)=1+2+3+...+n=n(n+1)/2
http://de.wikipedia.org/wiki/Beweis_(Mathematik)#Der_direkte_Beweis

Dabei sollen 2 Summen untereinander addiert werden.
S(n) =   1   +   2   + ... + (n-1) +   n
Und die 2. Summe (andersrum geschrieben!)
S(n)= n + (n-1) + ... + 2 + 1

Und das wäre auch schon meine Frage. Wie kommt man auf sowas? Gibt es dabei irgendein Trick für diesen genialen Einfall oder kommt man darauf einfach nur durch Probieren?


        
Bezug
direkter Beweis: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:29 Mo 11.07.2005
Autor: Julius

Hallo!

Schau doch noch mal in den Link. Auf so etwas können schon siebenjährige halbwegs begabte Kinder kommen. [lol]

Aber ich denke mal da wärst du mit etwas mathematischer Erfahrung auch selber drauf gekommen, wenn du etwas rumprobiert hättest. Das Umordnen von Summen etc. gehört mit zu den Standardtricks der Mathematik.

Viele Grüße
Julius

Bezug
        
Bezug
direkter Beweis: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:30 Mo 11.07.2005
Autor: Jazzy

Hi :)

Also ich würde mich jetzt nicht als besonders genial bezeichnen, aber ich bin damals in der Schule (allerdings war ich so ca 17 und nicht 7 oder 8  wie der Gauss :) ) auch darauf gekommen, ohne die "Formel von Gauss" zu kennen. Letztendlich möchtest Du ja die Summe der Zahlen zwischen von 1 bis n berechnen und Umsortieren funktioniert eben sehr gut :)

Viele Grüße,
Jazzy

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]