matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationdifferenzierbarkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Differentiation" - differenzierbarkeit
differenzierbarkeit < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

differenzierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:11 Mi 06.02.2008
Autor: mini111

hallo ihr lieben!
wie zeige ich dass eine funktion differenzierbar in null ist?man hat zb.die funktion : [mm] X=\IR,f:x \mapsto [/mm] exp(-1/x) für [mm] x\not=0 [/mm] und 0 für x=0
ich weiß überhaupt nicht wie man da vorgehen soll.
gruß und danke












        
Bezug
differenzierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 09:25 Mi 06.02.2008
Autor: korbinian

Hallo,
hier mußt Du auf die Definition der Differenzierbarkeit zurückgreifen. Also den (linksseitigen und rechtsseitigen) Differenzenquotienten bilden und dessen Grenzwert bilden. Diese kann man (formal) unterschiedlich definieren. Schau mal in Deinen Aufzeichnungen nach, wie Ihr das formuliert habt. Wenn Du mit dem Grenzwert nicht klar kommst, melde Dich nochmals.
Gruß korbinian

Bezug
                
Bezug
differenzierbarkeit: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 12:03 Mi 06.02.2008
Autor: mini111

hallo!!
danke für die antwort!wenn man zb.die funktion: [mm] x\mapsto \bruch{sinx^2}{x} [/mm] für [mm] x\not=0 [/mm] und 0 für x=0 [mm] definitonsbereich=\IR [/mm] hat und prüfen soll ob die funktion in 0 differ.bar ist,bildet man dann den [mm] diff.quotient:=sinx^2/x^2 [/mm] und dann??weiß ich nicht weiter.
gruß

Bezug
                        
Bezug
differenzierbarkeit: andere Möglichkeit
Status: (Antwort) fertig Status 
Datum: 12:21 Mi 06.02.2008
Autor: Zwerglein

Hi, victoria,

Es gibt in vielen Fällen eine andere, meist einfachere Methode, die Dbk. zu beweisen:

Wenn die Funktion f an der betreffenden Stelle x = [mm] x_{o} [/mm] STETIG ist
und der Grenzwert [mm] \limes_{x\rightarrow x_{o}} [/mm] f'(x) existiert
(also von rechts und links dieselbe Zahl rauskommt),
dann ist f differenzierbar für [mm] x=x_{o}. [/mm]

mfG!
Zwerglein  


Bezug
                                
Bezug
differenzierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:48 Mi 06.02.2008
Autor: mini111

hallo,vielen danke für die antwort,aber wie püfe ich stetigkeit??
lieben gruß

Bezug
                                        
Bezug
differenzierbarkeit: Grenzwerte
Status: (Antwort) fertig Status 
Datum: 16:30 Mi 06.02.2008
Autor: Roadrunner

Hallo mini!


Für die Stetigkeit einer Funktion an der Stelle [mm] $x_0$ [/mm] musst Du die beiden Grenzwerte (linksseitiger und rechtsseitiger Grenzwert) berechnen und vergleichen.

Diese müssen dann übereinstimmen und auch mit dem Funktionswert [mm] $f(x_0)$ [/mm] überienstimmen.


Gruß vom
Roadrunner


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]