matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFourier-Transformationdifferenzierbare Funktionen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Fourier-Transformation" - differenzierbare Funktionen
differenzierbare Funktionen < Fourier-Transformati < Transformationen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Fourier-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

differenzierbare Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:38 So 07.03.2010
Autor: Karl_Pech

Hallo Zusammen,


Aufgabe
Sei [mm]\textstyle L^2(\mathbb{R}):=\left\{f:\mathbb{R}\to\mathbb{C}\left|f\texttt{ messbar und }\int_{\mathbb{R}}{\left|f(t)\right|^2\operatorname{d}\!t}<\infty\right.\right\}[/mm]. Sei [mm]f\in L^2(\mathbb{R})[/mm]. Dann gilt:

(1) Ist [mm]f\![/mm] differenzierbar mit [mm]f'\in L^2(\mathbb{R})[/mm]. Dann gilt: [mm]\widehat{f'}(\omega)=2\pi\!\operatorname{i}\omega\hat{f}(\omega)[/mm].

(2) Ist [mm]\hat{f}[/mm] differenzierbar, so gilt mit [mm]g(t):=tf(t)\![/mm]: [mm]\hat{f}'(\omega)=-2\pi\!\operatorname{i}\hat{g}(\omega)[/mm].


(1) Es gilt wegen der Produktregel:


[mm]\frac{\partial}{\partial t}f(t)e^{-2\pi\!\operatorname{i}\omega t}=f'(t)e^{-2\pi\!\operatorname{i}\omega t}-2\pi\!\operatorname{i}\omega f(t)e^{-2\pi\!\operatorname{i}\omega t}[/mm]


Also gilt im Umkehrschluss:


[mm]f(t)e^{-2\pi\!\operatorname{i}\omega t}=\widehat{f'}(\omega) -2\pi\!\operatorname{i}\omega \hat{f}(\omega)\Leftrightarrow 2\pi\!\operatorname{i}\omega \hat{f}(\omega) = \widehat{f'}(\omega)-f(t)e^{-2\pi\!\operatorname{i}\omega t}[/mm]

Wie kann ich hier den zweiten Term im zweiten Teil der Gleichung "loswerden"? Denn sonst gilt die Aussage nur für [mm]f(t)=0\![/mm].


(2) Hier habe ich ein ähnliches Problem wie bei (1):


[mm]\frac{\partial}{\partial\omega}-f(t)e^{-2\pi\!\operatorname{i}\omega t}=-e^{-2\pi\!\operatorname{i}\omega t}-f(t)(-2\pi\!\operatorname{i}t)e^{-2\pi\!\operatorname{i}\omega t}[/mm]


Also gilt im Umkehrschluss:


[mm]-f(t)e^{-2\pi\!\operatorname{i}\omega t}=-\int{e^{-2\pi\!\operatorname{i}\omega t}\operatorname{d}\!\omega}-(-2\pi\!\operatorname{i})\int{tf(t)e^{-2\pi\!\operatorname{i}\omega t}\operatorname{d}\!\omega}[/mm]


Hier weiß ich leider nicht weiter. Bei der Fouriertransformation wird doch nach [mm]t\![/mm] integriert, oder?



Danke für die Hilfe!

Viele Grüße
Karl




        
Bezug
differenzierbare Funktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:57 So 07.03.2010
Autor: Doing

Hallo!

Ich weiß ehrlich gesagt nicht so recht, was du da grade machst.
Die Fourier-Transformierte zu f lautet
[mm]\hat{f} (\omega)= \integral_{-\infty}^{\infty}{f(t)exp(-i2\pi \omega t) dt} [/mm]
Die sollst du jetzt differenzieren. Den Integranden nach t abzuleiten bringt dich nicht weiter.

Gruß,
Doing


Edit: Entschuldige, ich hab da wohl was missverstanden. Du willst die Fourier-Transformierte der Funktion f' bestimmen stimmts?
In dem Falle kannst du diese sofort berechnen (sofern du weißt dass diese auch existiert usw.), und zwar mit partieller Integration.

Und bei der b) soll wohl die Ableitung der Fouriertransformierten bestimmt werden. Hier musst du begründen, wieso du unter dem Integral differenzieren darfst.

Bezug
                
Bezug
differenzierbare Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:24 Mo 08.03.2010
Autor: Karl_Pech

Hallo Doing,


> Edit: Entschuldige, ich hab da wohl was missverstanden.
> Du willst die Fourier-Transformierte der Funktion f'
> bestimmen stimmts?
> In dem Falle kannst du diese sofort berechnen (sofern du
> weißt dass diese auch existiert usw.), und zwar mit
> partieller Integration.


Ich habe es jetzt mit partieller Integration versucht. Da bleibt leider ein störender Term übrig:


[mm]\int_{\mathbb{R}}{f'(t)e^{-2\pi\!\operatorname{i}\omega t}\operatorname{d}\!t}= \lim_{B\to\infty}{\left(\int_{-B}^0{\underbrace{f'(t)}_{=:u'}\underbrace{e^{-2\pi\!\operatorname{i}\omega t}}_{=:v}\operatorname{d}\!t}+ \int_0^B{\underbrace{f'(t)}_{=:u'}\underbrace{e^{-2\pi\!\operatorname{i}\omega t}}_{=:v}\operatorname{d}\!t}\right)}[/mm]

[mm]=\lim_{B\to\infty}{\left(\left[f(t)e^{-2\pi\!\operatorname{i}\omega t}\right]_{-B}^0 - \int_{-B}^0{f(t)(-2\pi\!\operatorname{i}\omega)e^{-2\pi\!\operatorname{i}\omega t}\operatorname{d}\!t} + \left[f(t)e^{-2\pi\!\operatorname{i}\omega t}\right]_0^B - \int_0^B{f(t)(-2\pi\!\operatorname{i}\omega)e^{-2\pi\!\operatorname{i}\omega t}\operatorname{d}\!t}\right)}[/mm]

[mm]=\lim_{B\to\infty}{\left(f(0) - f(-B)e^{2\pi\!\operatorname{i}\omega B} + f(B)e^{-2\pi\!\operatorname{i}\omega B} - f(0)\right)} + 2\pi\!\operatorname{i}\omega\lim_{B\to\infty}{\left(\int_{-B}^0{f(t)e^{-2\pi\!\operatorname{i}\omega t}\operatorname{d}\!t} + \int_0^B{f(t)e^{-2\pi\!\operatorname{i}\omega t}\operatorname{d}\!t}\right)}[/mm]

[mm]= \textcolor{red}{\lim_{B\to\infty}{\left(f(B)e^{-2\pi\!\operatorname{i}\omega B} - f(-B)e^{2\pi\!\operatorname{i}\omega B}\right)}} + 2\pi\!\operatorname{i}\omega \hat{f}(\omega)[/mm]


Wie kann ich zeigen, daß der rote Term 0 ist, um auf die zu beweisende Aussage zu kommen?


> Und bei der b) soll wohl die Ableitung der Fouriertransformierten bestimmt werden. Hier musst du begründen, wieso du unter dem Integral
> differenzieren darfst.


Laut der Aufgabenstellung ist [mm]\hat{f}[/mm] differenzierbar. Reicht das so als Begründung, oder muß man da noch mehr schreiben? Jedenfalls rechne ich dann folgendermaßen:


[mm]\hat{f}'(\omega) = \int_{\mathbb{R}}{\frac{\partial}{\partial \omega}{f(t)e^{-2\pi\!\operatorname{i}\omega t}}\operatorname{d}\!t}[/mm]

[mm]= \int_{\mathbb{R}}{\left(e^{-2\pi\!\operatorname{i}\omega t} + f(t)(-2\pi\!\operatorname{i}t)e^{-2\pi\!\operatorname{i}\omega t}\right)\operatorname{d}\!t}=\int_{\mathbb{R}}{e^{-2\pi\!\operatorname{i}t}\operatorname{d}\!t}-2\pi\!\operatorname{i}\int_{\mathbb{R}}{tf(t)e^{-2\pi\!\operatorname{i}\omega t}\operatorname{d}\!t}[/mm]

[mm]= \textcolor{magenta}{\int_{\mathbb{R}}{e^{-2\pi\!\operatorname{i}t}\operatorname{d}\!t}}-2\pi\!\operatorname{i}\hat{g}(\omega)[/mm]


Wie kann ich zeigen, daß der Magenta-Term 0 ist, um die Aussage zu beweisen?



Danke!

Viele Grüße
Karl




Bezug
                        
Bezug
differenzierbare Funktionen: Antwort (nicht fertig)
Status: (Antwort) noch nicht fertig Status 
Datum: 21:08 Mo 08.03.2010
Autor: SEcki


> Wie kann ich zeigen, daß der rote Term 0 ist, um auf die
> zu beweisende Aussage zu kommen?

EDIT: Das ist doch im Allgemeinen nicht 0 - alle Beweise, die ich finden konnte, gingen davon aus, dass der Term gegen 0 geht. Ich schaue mal weiter nach ...

SEcki

Bezug
                        
Bezug
differenzierbare Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:12 Sa 03.04.2010
Autor: mathfunnel

Hallo [mm] Karl,\\ [/mm]
zu Aufgabe [mm] (1):\\ [/mm]
Der Term $ [mm] \textcolor{red}{\lim_{B\to\infty}{\left(f(B)e^{-2\pi\!\operatorname{i}\nu B} - f(-B)e^{2\pi\!\operatorname{i}\nu B}\right)}}$ [/mm] ist gleich Null, da [mm] $f(\pm B)\rightarrow [/mm] 0$ für $B [mm] \rightarrow \infty$, [/mm] wegen der in der Aufgabe vorausgesetzten Quadratintegrierbarkeit ($f [mm] \in L^2(\mathbb{R})$) [/mm] und weil der Exponentialterm auf [mm] $\mathbb{R}$ [/mm] beschränkt [mm] ist.\\ [/mm]
zu Aufgabe [mm] (2)\\ [/mm]
Der "'Magenta-Term"' ist einfach ein (wohl beim Ableiten entstandener) Fehler. Es gilt:
$ [mm] \hat{f}'(\omega) [/mm] = [mm] \int_{\mathbb{R}}{\frac{d}{d \omega}{f(t)e^{-2\pi\!\operatorname{i}\omega t}}\operatorname{d}\!t} [/mm] = [mm] -2\pi\!\operatorname{i}\int_{\mathbb{R}}{t {f(t)e^{-2\pi\!\operatorname{i}\omega t}}\operatorname{d}\!t} [/mm] $.
Noch eine Bemerkung: Die Möglichkeit der Vertauschung von uneigentlichem Integral und Ableitung, wird z.B. durch die Bedingung der absoluten Integrierbarkeit von $tf(t)$ auf [mm] $\mathbb{R}$ [/mm] sichergestellt. Ich vermute, dass diese oder eine ähnliche Voraussetzung in der Aufgabe fehlt.

Gruß mathfunnel

Bezug
                                
Bezug
differenzierbare Funktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:37 So 04.04.2010
Autor: Karl_Pech

Hallo Zusammen,


Danke für eure Hilfe bei dieser Aufgabe. Den Rechenfehler beim Magentaterm habe ich übersehen. Danke für den Hinweis mathfunnel!



Grüße
Karl




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Fourier-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]