matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-Funktionendifferenziationsübung/ableiten
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Exp- und Log-Funktionen" - differenziationsübung/ableiten
differenziationsübung/ableiten < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

differenziationsübung/ableiten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:39 Fr 19.04.2013
Autor: Saskia1996

Aufgabe
Leite ab:
a) f(x)= "wurzel [mm] aus"e^x [/mm]
b) f(x)= 1/"Wurzel aus" [mm] e^x [/mm]

Das Problem liegt bei a und b:
In der Schule sind wir bei a so vorgegangen:
f(x) = Wurzel aus [mm] e^x [/mm] = [mm] (e^x)^0,5 [/mm]
[mm] f'(x)=0,5·(e^x)^-0,5 [/mm] · [mm] e^x [/mm]
Nach der kettenregel berechnet. das ist klar und versteh ich.
aber die b ist ja im Prinzip dasselbe. Wir haben es aber anders gerechnet:
f(x)=1/Wurzel [mm] e^x [/mm] = [mm] (e^x)^-0,5 [/mm] = [mm] e^0,5 [/mm]   -->wieso konnte ich das bei der a nicht auch so machen?
f'(x)=e^-0,5x · (-0,5)
Ist das hier auch mit der kettenregel berechnet? Eigtl nicht,oder?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
differenziationsübung/ableiten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:52 Fr 19.04.2013
Autor: Saskia1996

Aufgabe
Leite ab: a) f(x)= [mm] sqrt(e^x) [/mm]
b) f(x)= [mm] 1/sqrt(e^x) [/mm]

In der Schule sind wir bei a so vorgegangen:
f(x) = [mm] sqrt(e^x) [/mm] = [mm] (e^x)^{1/2} [/mm]
f'(x)= 1/2 · [mm] (e^x)^{-1/2} [/mm] · [mm] e^x [/mm]
Nach der kettenregel berechnet. das ist klar und versteh ich. aber die b ist ja im Prinzip dasselbe. Wir haben es aber anders gerechnet:
[mm] f(x)=1/(sqrt(e^x)) [/mm] = [mm] (e^x)^{-1/2} [/mm]  -->wieso konnte ich das bei der a nicht auch so machen? f'(x)=e^(-1/2 x) · (-1/2) Ist das hier auch mit der kettenregel berechnet? Eigtl nicht,oder?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Bezug
        
Bezug
differenziationsübung/ableiten: Antwort
Status: (Antwort) fertig Status 
Datum: 18:02 Fr 19.04.2013
Autor: schachuzipus

Hallo Saskia1996 und erstmal [willkommenmr],


> Leite ab:
> a) f(x)= "wurzel [mm]aus"e^x[/mm]
> b) f(x)= 1/"Wurzel aus" [mm]e^x[/mm]
> Das Problem liegt bei a und b:
> In der Schule sind wir bei a so vorgegangen:
> f(x) = Wurzel aus [mm]e^x[/mm] = [mm](e^x)^0,5[/mm]

Exponenten, die länger als 1 Zeichen sind, musst du in geschweifte Klammern packen, also

\sqrt{e^x}=\left(e^x\right)^{0,5} für [mm]\sqrt{e^x}=\left(e^x\right)^{0,5}[/mm]

> [mm]f'(x)=0,5·(e^x)^-0,5[/mm] · [mm]e^x[/mm]

Das [mm]\Delta[/mm] soll ein Malpunkt sein, oder?

> Nach der kettenregel berechnet. das ist klar und versteh
> ich.
> aber die b ist ja im Prinzip dasselbe. Wir haben es aber
> anders gerechnet:
> f(x)=1/Wurzel [mm]e^x[/mm] = [mm](e^x)^-0,5[/mm] [ok]= [mm]e^0,5[/mm] [notok]

Meinst du [mm]e^{-0,5x}[/mm] ?

> -->wieso konnte
> ich das bei der a nicht auch so machen?

Hättest du machen können, das ist ja bloß eine Anwendung des Potenzgesetzes [mm]\left(a^m\right)^n=a^{m\cdot{}n}[/mm]

Für a) wäre das [mm]f(x)=e^{0,5x}[/mm], also [mm]f'(x)=e^{0,5x}\cdot{}0,5[/mm]

Und das ist doch genau dasselbe, was ihr in der Schule auch raus hattet ...

Probe: Schulergebnis: [mm]f'(x)=0,5\cdot{}\left(e^x\right)^{-0,5}\cdot{}e^x=0,5\cdot{}e^{-0,5x}\cdot{}e^x=0,5\cdot{}e^{-0,5x+x}=0,5\cdot{}e^{0,5x}[/mm]

Passt also!

> f'(x)=e^-0,5x · (-0,5) [ok]
> Ist das hier auch mit der kettenregel berechnet? Eigtl
> nicht,oder?

Doch: äußere Funktion [mm]e^z[/mm], innere Funktion [mm]g(x)=-0,5x[/mm]

>

> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

>

Gruß

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]