matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGeraden und Ebenendifferentialrechnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Geraden und Ebenen" - differentialrechnung
differentialrechnung < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

differentialrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:56 So 20.08.2006
Autor: Knaubi

Kann mir jemand bei dieser aufgabe Helfen.


Aufgabe;
Um 9Uhr morgens befindet sich der Öltanker ,,contona" genau 40 sm(Seemeilen, 1 sm= 1,852km) östlich des Kreuzfahrtschiffes,, Princess Jane".
Die ,,Cantona" fährt mit einer Geschwindigkeit von 10 Knoten

(1 Knoten =1 sm/h) in nördliche Richtung, die ,,Princess Jane´" auf einem Kurs in östlicher Richtung mit 15 Knoten unterwegs.

beide Schiffe halten Kurs und Geschwindigkeit über einen längeren Zeitraum exakt bei.

a)Um wie viel Uhr ist der Abstand zwischen den beiden Schiffen am gerinsten?
b)Wie gross ist der minimale Abstand? Welche Strecke haben die beiden Schiffe seit 9Uhr bis zu diesem Zeitpunkt zurückgelegt?


Bitte,Bitte hilfe.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
differentialrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:02 So 20.08.2006
Autor: Fulla

hi knaubi!

zuerst stellst du dir die beiden schiffe in einem koordinatensystem vor:
die princess jane (J) befindet sich im ursprung (0|0) und die contona (C) im punkt (40|0). das ist die situation um 9 uhr.

J bewegt sich nach osten (also in richtung der x-achse)  und zwar mit 15 knoten. nach 1h wäre die position (15|0), nach zwei stunden (30|0) usw.
--> du kannst eine funktion für den ort von J aufstellen: J(t)=(15t|0)

genauso machst du das mit C: .... --> C(t)=(40|10t)

den abstand (immernoch als funktion der zeit) bekommst du dann über:
d(J,C)=|J-C| (betrag von [J(t)-C(t)] )

wenn du das richtig machst, stößt du auf eine quadratische gleichung (abhängig von t), deren minimum du ganz leicht ausrechnen kannst.
das ist dann die zeit, die vergangen ist, bis die beiden schiffe den kleinsten abstand erreicht haben... d.h. diese zeit musst du noch zu 9 uhr addieren und du erhältst die gesuchte uhrzeit. [zur kontrolle: ca. 10:50 uhr]

für die aufgabe b) musst du die minimale zeit in die beiden funktionen J(t) und C(t) einsetzen und wieder den betrag berechnen --> minimaler abstand

für die jeweils zurückgelegten strecken benutzt du die jeweiligen geschwindigkeiten und wieder die min. zeit.


ich hoffe das war einigermaßen verständlich :-)
lieben gruß
Fulla

Bezug
                
Bezug
differentialrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:29 So 20.08.2006
Autor: Knaubi

wie meinst du das wie soll sie den lauten? vielleicht ist die frage jetzt dumm
aber das einfache ist immer unverstendlich (grins)


du kannst eine funktion für den ort von J aufstellen: J(t)=(15t|0)

genauso machst du das mit C: .... --> C(t)=(40|10t)

den abstand (immernoch als funktion der zeit) bekommst du dann über:
d(J,C)=|J-C| (betrag von [J(t)-C(t)] )



Bezug
                        
Bezug
differentialrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:05 Mo 21.08.2006
Autor: Docy

Hi Knaubi,
sei [mm] v_{1} [/mm] die Geschwindigkeit des Öltankers, der sich nach Norden bewegt und [mm] v_{2} [/mm] die Geschwindigkeit der "Prinzessin" , dann gilt nach dem Satz des Phytagoras für den Abstand D:

[mm] D(t)=\wurzel{(v_{1}t)^{2}+(40-v_{2}t)^{2}} [/mm]

das musst du nun ableiten und auf Extremstellen untersuchen...
(Vergiss nicht auch den Abstand zu checken, wenn die Prinzessin die ursprüngliche Position des Tankers erreicht!)

Gruß
Docy

Bezug
                                
Bezug
differentialrechnung: Hinweis
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:14 Mo 21.08.2006
Autor: Roadrunner

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hallo!


Zur Vereinfachung des Rechenaufwandes und aufgrund der Monotonie der Wurzelfunktion reicht es auch aus, für die Extremwertberechnung die Funktion $f(t) \ = \ \left[ \ D(t) \ \right]^{\red{2}} \ = \ \left(v_{1}*t\right)^{2}+\left(40-v_{2}*t\right)^{2}}$ zu betrachten und zu untersuchen.


Gruß vom
Roadrunner


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]