matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Sonstigesdiffb. Parametrisierung finden
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis-Sonstiges" - diffb. Parametrisierung finden
diffb. Parametrisierung finden < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

diffb. Parametrisierung finden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:44 So 12.01.2014
Autor: EvelynSnowley2311

Aufgabe
Gebe eine diffb. Parametrisierung für folgende Kurve an:

Schnitt der Oberfläche der Kugel mit Radius 2, Center (0,0,1) mit der Menge aller (x,y,z) [mm] \in \IR^3 [/mm] mit x=z

Huhu zusammen!

Bei der Findung tu ich mich schwer, also soweit bin ich schon:

Ich habe [mm] x^2 +y^2 [/mm] + [mm] (z-1)^2 [/mm] =4 als die Oberfläche , und betrachte nur diejenigen Punkte, wo x= z ist.

Geometrisch betrachtet ist dies( so denke ich es zumindest) eine Art Rand einer Kreisscheibe, die quer in der Kugel liegt. (bzw um die Kugel)

Löst man das obige System, so erhält man nun für y=

[mm] y_1 [/mm] = [mm] \wurzel{-2x^2 +2x +3} [/mm] und [mm] y_2 [/mm] = -  [mm] \wurzel{-2x^2 +2x +3} [/mm]

d.h. meiner Meinung nach muss man zwei Parametrisierungen haben, damit man den ganzen Rand erwischt.

Also betrachtet man gleichzeitig die Parametrisierungen:

[mm] c_1 [/mm] := t [mm] \mapsto [/mm] [t,  [mm] \wurzel{-2t^2 +2t +3} [/mm] , t ]

[mm] c_2 [/mm] := t [mm] \mapsto [/mm] [t, - [mm] \wurzel{-2t^2 +2t +3} [/mm] , t ]

Mal angenommen, das ist soweit richtig, hab ich keinerlei Idee, wie die Intervallgrenzen von t zu wählen sind :/
Hoffe da kann mir jmd weiterhelfen :)

Lieben Gruß,

Eve

        
Bezug
diffb. Parametrisierung finden: Antwort
Status: (Antwort) fertig Status 
Datum: 14:01 Di 14.01.2014
Autor: leduart

Hallo
a) bestimme den Mittelpunkt M  des Kreises auf der Geraden senkrecht der Ebene durch (0,0,1)
b) bestimme den Radius
c) bestimme  2 zueinander senkrechte Einheitsvektoren in der Ebene.v1, v2

d) dann ist die parmetrisierung [mm] M+v1cos\phi+v2sin\phi [/mm]
zu a bis c hilft eine Slizze,
Gruß leduart

Bezug
                
Bezug
diffb. Parametrisierung finden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:37 Mi 15.01.2014
Autor: EvelynSnowley2311


> Hallo
>  a) bestimme den Mittelpunkt M  des Kreises auf der Geraden
> senkrecht der Ebene durch (0,0,1)
>  b) bestimme den Radius
>  c) bestimme  2 zueinander senkrechte Einheitsvektoren in
> der Ebene.v1, v2
>  
> d) dann ist die parmetrisierung [mm]M+v1cos\phi+v2sin\phi[/mm]
>  zu a bis c hilft eine Slizze,
> Gruß leduart


Huhu,

a) sry ich steh etwas auf dem Schlauch :( Ich versteh den Satz nicht ganz  Mit Ebene meinst du die x -y - Ebene? Dann wär die Gerade entlang der z- Achse, und das wär dann trotzdem der Mittelpunkt M = (0,0,1).

b) Der Radius des Kreises in der Kugel müsste doch wieder 2  sein, sofern es sich um einen kreis handelt, und nicht um einen ellipsoid.

c) Wenn wie gesagt die Ebene x-y sein soll, nehm ich (0,1,0) und (1,0,0)

Sry .. Es gibt ja sozusagen eine Grade, die durch (x,y,z) mit x=z definiert wird (Diese Gerade verläuft skizzenartig ja , weil y beliebig, "von links nach rechts" in einem 3 dimensionalen Koordinatensystem. In der Regel müsste diese Gerade den Kreisrand 2 mal berühren, einmal wenn die Gerade die Kugeloberfläche trifft, und einmal, wenn sie die Kugelw ieder verlässt. (ausser wahrscheinlich am linken und rechten Rand der Kugel, da streift die Gerade den Rand nur einmal)



Bezug
                        
Bezug
diffb. Parametrisierung finden: Antwort
Status: (Antwort) fertig Status 
Datum: 12:39 Mi 15.01.2014
Autor: leduart

Hallo
wenn du eine Kugel irgend wie mit einer Ebene schneidest hast du immer einen Kreis als Schnittkurve. Der Mittelpunkt des Schnittkeises   liegt auf der Senkrechten vom Kugelmittelpunkt auf die Ebene.
zur Vorstellung: schneide mal von der Erde irgendwo die Polkappe längs eines Breitenkreises ab,  wie du dann die Erde im Raum drehst ist egal, die Schnittkurve bleibt ein Kreis! und natürlich ist der Radius des Kreises nicht der Erdradius.
Also erstmal mußt du deine Vorstellung korrigieren! vielleicht schneidest du mal ne schön runde Orange durch!
Die Ebene ist nicht die x-y Ebene sondern die Ebene x-z=0
zeichne dir mal nen Schnitt mit der y=0 Ebene, darin ist dder Schnitt mit der x-z=0 ebene die Winkelhalbierende. aus der Zeichnung solltest du alles ablesen können!
x-z=0 ist eine Ebene senkrecht zur x-z ebene, also für y=o eine Gerade als Schnitt
Also mach mal die Zeichnung oder nimm deine Orange zur Hilfe!

Gruss leduart

Bezug
        
Bezug
diffb. Parametrisierung finden: Antwort
Status: (Antwort) fertig Status 
Datum: 09:33 Mi 15.01.2014
Autor: Ladon

Wie mein Vorredner bemerkt hat, sollte man den Radius [mm] \rho [/mm] bestimmen.
Ich würde daher die Formel zur Beschreibung des entstandenen Kreises wie folgt formulieren:
[mm] $M+\rho v_1 cos(\phi) [/mm] + [mm] \rho v_2 sin(\phi)$, [/mm]
denn den Radius bestimmt man ja nicht zum Spaß ;-)

MfG Ladon

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]