matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare Algebradiagonalmatrix
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Lineare Algebra" - diagonalmatrix
diagonalmatrix < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

diagonalmatrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:04 Mi 28.06.2006
Autor: annaL

hallo!

Ich habe mal wieder einige Problemchen und würde mich freuen wenn ihr mal über meine Aufgaben schaut und mir evtl. mal "in kindersprache" erklären könntet, wie man bei solchen Aufgaben vorzugehen hat bzw. mir vielleicht einmal an meinen Beispielen vorrechnet.
Ich tue mich nämlich immer leichter wenn ich Beispielaufgaben habe :0)

Danke!

1. ) prüfe, ob  sich die lineare Abbildung f:V-->V durch eine Diagonalmatrix beschreiben lässt.
Wenn ja, bestimme eine solche matrix mit zugehöriger Basis von V! und Transformierender!

[mm] V=R^2 [/mm]

f(x) = 5   1      *x     ( Ich meine natürlich die gegebene Matrix *x)
         2   7  


2.  Transformiere die Matrix A auf Diagonalform mit Angabe der Transformationsmatrix T.

A =    5   2   1
         2   3   -4
         2  -3    2

Ich weiß leider überhaupt nicht was ich zu zun habe. Habe auch schon im Netz nach Beispielaufgaben gesucht, doch leider vergebens :(

DANKE!

        
Bezug
diagonalmatrix: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:05 Mi 28.06.2006
Autor: annaL

zu 1 )   die Matrix lautet:

[mm] \pmat{ 5 & 2 \\ 1 & 7 } [/mm]



zu 2 )   die Matrix soll heißen :


5   2   1
2   3  -4
2  -3   2

Bezug
                
Bezug
diagonalmatrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:00 Mi 28.06.2006
Autor: rotespinne

Hallo!

Ich habe ein ähnliches Problem ( die aufgabenstellungen sind etwas anders ) aber ich tue mich auch seeehr schwer mit der diagonalmatrix und wäre über eine erklärung erfreut.

Bezug
                        
Bezug
diagonalmatrix: Antwort
Status: (Antwort) fertig Status 
Datum: 22:13 Mi 28.06.2006
Autor: FrankM

Hallo,

falss immer noch Punkten offen sind einfach noch mal nachfragen.

Gruß
Frank

Bezug
        
Bezug
diagonalmatrix: Antwort
Status: (Antwort) fertig Status 
Datum: 22:10 Mi 28.06.2006
Autor: FrankM

Hallo,

die suchst also eine Basis so dass gilt:
[mm] \pmat{ a & 0 \\ 0 & b } [/mm] für die Einheitsvektoren dieser Basis gilt:

[mm] \pmat{ a & 0 \\ 0 & b } \vektor{1 \\ 0}=a \vektor{1 \\ 0} [/mm] und

[mm] \pmat{ a & 0 \\ 0 & b } \vektor{0 \\ 1}=b \vektor{0 \\ 1} [/mm] die neuen Basisvektoren müssen also Eigenvektoren deiner Matrix sein. Du musst also die Eigenwerte und Eigenvektoren der Matrix bestimmen. Die Eigenwerte sind dann die Einträge auf der Diagonalen der Diagonalmatrix.

Gruß
Frank

Bezug
                
Bezug
diagonalmatrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:24 Do 29.06.2006
Autor: annaL

Hallo Frank!

Leider ist mir immernoch nicht wirklich klar, wie ich eine solche Aufgabe lösen soll.

1. ) wie prüfe ich ob sich eine Abbildung durch eine Diagonalmatrix darstellen lässt?

2. wie bestimme ich dann eine solche Matrix mit zugehöriger Basis?

3. Wie transformiere ich eine gegebene Matrix auf Diagonalform mit Angabe der Transformationsmatrix?

Alles Fragen dir mir noch völlig unklar sind....

wäre froh wenn sie mir jemand am Beispiel erklären würde....


Lieben lieben Dank

Bezug
                        
Bezug
diagonalmatrix: Antwort
Status: (Antwort) fertig Status 
Datum: 08:51 Do 29.06.2006
Autor: steffenhst

Hallo,

du kannst es auch so machen:

1. Die Matrixdarstellung der Abbildung bestimmen (am einfachsten, indem du die Standardbasisvektoren nimmst).

2. Nimm diese Matrixdarstellung und bestimme das charakteristische Polynom, Eigenwerte.

3. Bestimme die Eigenvektoren.

4. Eine Matrix ist dann diagonalisierbar, wenn

a.) das charakteristsiche Polynom in linearfaktoren zerfällt --> wenn du also Eigenwerte bestimmen kannst

b.) wenn die Dimension des Eigenraumes zu einem Eigenvektor mit dem Vorkommen dieses Eigenwertes im charketeristsichen Polynom übereinstimmt, z.B. chP (A) = (x - [mm] 2)^{2}(x [/mm] - 1) --> Der Eigenwert 2 kommt zweimal vor, d.h. die Dimension seines Eigenraumes muss auch 2 sein. wichtig: die Basis des Eigenraumes ist/sind die Eigenvektoren zu einem Eigenwert.

--> schau in deinem Buch auch nochmal unter allgemeines Diagonalisierbarkeitskriterium --> da steht genau das drin

5. Wenn die Vorrausetzungen stimmen, dann kannst du die Abbildung auch mit der Matrix darstellen, die die Eigenwerte auf der Diagonalen hat. Und die Basis, die du einsetzen musst, um auf diese Matrix zu kommen, sind die Eigenvektoren. Du machst also einen Basiswechsel. (Die Transformationsmatrix ist einfach nur die Eigenvektoren als Spalten in einer Matrix)

Das ist im groben das Prinzip und Frank wollte darauf hinaus.

Grüße Steffen

Bezug
                                
Bezug
diagonalmatrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:34 Do 29.06.2006
Autor: annaL

Vielen lieben Dank für eure Bemühungen, tort alldem kann ich die Aufgaben nicht lösen, weil es mir sehr schw3r fällt das ganze anzuwenden.
Trotzdem danke.

Bezug
                                        
Bezug
diagonalmatrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:37 Do 29.06.2006
Autor: annaL

Ich soll nun folgende Matrix auf Diagonalmatrix transofirmieren und die Transformationsmatrix angeben:

2   5   -2
2  -4    2
2   2   -4

Nun muss ich ja zuerst die Eigenwerte bestimmen.

Aber dann? Ich verstehe das Prinzip einfach nicht :/

Bezug
                                                
Bezug
diagonalmatrix: Antwort
Status: (Antwort) fertig Status 
Datum: 12:46 Do 29.06.2006
Autor: steffenhst

Hallo AnnaL,

genau als erstes das charakteristische Polynom bestimmen und darüber die Eigenwerte.

Dann nimmst du die Eigenwerte und bestimmst die Eigenvektoren: über (A - xE); dabei ist A die vorgegebene Matrix und x der jeweilige Eigenvektor. Die/ der Eigenvektor/en sind nichts anderes als der Kern von (A - xE), d.h. die entstandene Matrix auf Zeilenstufenform bringen und daran den/ die Eigenvektor/en ablesen.

Ich würde vorschlagen du machst es bis hierher bzw. soweit du kommst und dann machen wir weiter.

Grüße Steffen

Bezug
                                                        
Bezug
diagonalmatrix: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:00 Do 29.06.2006
Autor: annaL

Hi Steffen

Danke, so geht es , glaube ich, ein bißchen besser.
Setze mich dann jetzt mal in Ruhe dran, muss danach noch zu einem Kurs und dann psote ich heute Abend was ich raus habe, okay?

Danke :0)

Bezug
                                                                
Bezug
diagonalmatrix: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:03 Do 29.06.2006
Autor: steffenhst

Ok machen wir so. Ich habe bis ca. 18.00 Uhr einen Internetzugang. Viel Spass beim Tüfteln, und du schaffst das bestimmt.

Grüße Steffen


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]