matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche Differentialgleichungendgl lös mit Potenzreihenansatz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Gewöhnliche Differentialgleichungen" - dgl lös mit Potenzreihenansatz
dgl lös mit Potenzreihenansatz < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

dgl lös mit Potenzreihenansatz: Idee
Status: (Frage) beantwortet Status 
Datum: 21:12 Di 14.08.2012
Autor: anncharlot

Aufgabe
Löse die Dgl mittels Potenzreihenansatz:
y´= cos(y)*x²      AWP: y(0)=1

Hallo, ich habe diese Dgl die ich mittels Potenzreihenansatz lösen soll.
Die normale Lösungsstrategie habe ich verstanden, ich nehme
y = [mm] \summe_{n=0} a_n x^n [/mm]
mit summe immer von 0 bis unendlich
das leite ich dann ab und setze die Summen ein. Dann mache ich einen Koeffizientenvergleich und bilde eine rekursive Folge für das [mm] a_k+1 [/mm] te Glied.

Was mir hier Probleme bereitet ist jedoch der Kosinus. Dadurch bekomme ich, wenn ich ihn auch als Reihe schreibe ja noch eine Summe rein und kann die 2 Summen nicht mehr richtig verbinden um dann die Koeffizienten zu vergleichen.
Ich habe ja sowas wie:
[mm] \summe a_n+1 [/mm] *(n+1) [mm] x^n [/mm] = [mm] \summe (-1)^n/(2n)! (\summe a_n x^n)^{2n}* [/mm] x²

Wie bekomme ich die Summen hier verbunden bzw wie soll ich mein [mm] a_k+1 [/mm] tes glied bestimmen?
Kann mir bitte jemand weiterhelfen wie ich hier vorgehen kann?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
dgl lös mit Potenzreihenansatz: Antwort
Status: (Antwort) fertig Status 
Datum: 21:26 Di 14.08.2012
Autor: MathePower

Hallo anncharlot,


[willkommenmr]


> Löse die Dgl mittels Potenzreihenansatz:
>  y´= cos(y)*x²      AWP: y(0)=1
>  Hallo, ich habe diese Dgl die ich mittels
> Potenzreihenansatz lösen soll.
>  Die normale Lösungsstrategie habe ich verstanden, ich
> nehme
>  y = [mm]\summe_{n=0} a_n x^n[/mm]
> mit summe immer von 0 bis unendlich
>  das leite ich dann ab und setze die Summen ein. Dann mache
> ich einen Koeffizientenvergleich und bilde eine rekursive
> Folge für das [mm]a_k+1[/mm] te Glied.
>  
> Was mir hier Probleme bereitet ist jedoch der Kosinus.
> Dadurch bekomme ich, wenn ich ihn auch als Reihe schreibe
> ja noch eine Summe rein und kann die 2 Summen nicht mehr
> richtig verbinden um dann die Koeffizienten zu
> vergleichen.
>  Ich habe ja sowas wie:
>  [mm]\summe a_n+1[/mm] *(n+1) [mm]x^n[/mm] = [mm]\summe (-1)^n/(2n)! (\summe a_n x^n)^{2n}*[/mm]
> x²
>  
> Wie bekomme ich die Summen hier verbunden bzw wie soll ich
> mein [mm]a_k+1[/mm] tes glied bestimmen?


Da hilft nur stures Ausrechnen der rechten Seite.


>  Kann mir bitte jemand weiterhelfen wie ich hier vorgehen
> kann?
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]