matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10dezimalzahlen in brüche umwand
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Mathe Klassen 8-10" - dezimalzahlen in brüche umwand
dezimalzahlen in brüche umwand < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

dezimalzahlen in brüche umwand: brüche
Status: (Frage) beantwortet Status 
Datum: 15:17 Mi 12.05.2010
Autor: manfreda

Aufgabe
0.83333333333... in bruch umwandeln


ich kriege es nicht hin solche zahlen ,unendlich viel stellen haben in einen bruch umzuwandeln

vielleicht weiss ja jemand wie man das mit dem taschenrechner "texas
instruments TI 30X macht

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
dezimalzahlen in brüche umwand: Nimm keinen Taschenrechner
Status: (Antwort) fertig Status 
Datum: 16:12 Mi 12.05.2010
Autor: karma

Hallo und guten Tag,

die Aufgabe ist hinreichend einfach - nimm keinen Taschenrechner.

[mm] $0.83333333333\ldots\ [/mm] =\ 0.8\ +\ [mm] 0.03333333333\ldots\ [/mm] =\ [mm] \frac{4}{5}+\frac{1}{10}\cdot\frac{1}{3}\ [/mm] =\ [mm] \frac{24}{30}+\frac{1}{30}\ [/mm] =\ [mm] \frac{25}{30}\ [/mm] =\ [mm] \frac{5}{6}$ [/mm]

Schönen Gruß
Karsten


Bezug
                
Bezug
dezimalzahlen in brüche umwand: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:16 Mi 12.05.2010
Autor: abakus


> Hallo und guten Tag,
>  
> die Aufgabe ist hinreichend einfach - nimm keinen
> Taschenrechner.
>  
> [mm]0.83333333333\ldots\ =\ 0.8\ +\ 0.03333333333\ldots\ =\ \frac{4}{5}+\frac{1}{10}\cdot\frac{1}{3}\ =\ \frac{24}{30}+\frac{1}{30}\ =\ \frac{25}{30}\ =\ \frac{5}{6}[/mm]
>  
> Schönen Gruß
>  Karsten

Hallo,
noch überschaubarer (für meine Begriffe) ist
0,833333... = 0,5+0,33333...
Gruß Abakus

>  


Bezug
        
Bezug
dezimalzahlen in brüche umwand: Antwort
Status: (Antwort) fertig Status 
Datum: 17:51 Mi 12.05.2010
Autor: gfm

Sei [mm] z\in\IQ [/mm] gegeben mit

[mm] z=G+\summe_{i=1}^k z_i 10^{-i}+\summe_{j=0}^{\infty}10^{-jp}\summe_{i=k+1}^{k+p} z_i 10^{-i} [/mm]

wobei [mm] G\in\IN [/mm] den ganzahlige Teil, die erste Summe (verschwindet wenn k=0) die ersten [mm] k\in\IN_0 [/mm] nichtperiodischen Nachkommastellen, die zweite eine Periode von [mm] p\in\IN_0 [/mm] und die [mm] z_i [/mm] die entsprechenden Ziffern bezeichnet.

Dann ist

[mm] z=G+\summe_{i=1}^k z_i 10^{-i}+\frac{1}{1-10^{-p}}\summe_{i=k+1}^{k+p} z_i 10^{-i}=G+\summe_{i=1}^k z_i 10^{-i}+\frac{10^p}{10^p-1}\summe_{i=k+1}^{k+p} z_i 10^{-i} [/mm]

[mm] =n+\summe_{i=1}^k z_i 10^{-i}+\frac{10^p}{10^p-1}10^{-k}\summe_{i=1}^{p} z_{i+k} 10^{-i}=G+\frac{10^k}{10^k}\summe_{i=1}^k z_i 10^{-i}+\frac{10^{p-k}}{10^p-1}\frac{10^p}{10^p}\summe_{i=1}^{p} z_{i+k} 10^{-i} [/mm]

[mm] =G+\frac{1}{10^k}\summe_{i=1}^k z_i 10^{k-i}+\frac{10^{p-k}}{10^p-1}\frac{1}{10^p}\summe_{i=1}^{p} z_{i+k} 10^{p-i}=G+\frac{\summe_{i=1}^k z_i 10^{k-i}}{10^k}+\frac{\summe_{i=1}^{p} z_{i+k} 10^{p-i}}{10^p-1}\frac{1}{10^k} [/mm]

Dieser Ausdruck besteht jetzt nur noch aus ganzen Zahlen oder Brüchen mit solchen.

Zur praktischen Anwendung schreibst Du das in der Form

[mm] G+\frac{K}{10^k}+\frac{P}{(10^p-1)10^k} [/mm]

wobei G der ganzzahlige Vorkommateil der Ausgangszahl, K der als ganze Zahl geschriebene Teil der k Nachkommastellen, die nicht periodisch sind und P die als ganze Zahl geschriebene Periode der Länge p ist.

Beispiel:

[mm] 9,25\overline{108}=9+\frac{25}{100}+\frac{108}{999*100}=9+1/4+1/925=34229/3700 [/mm]

LG

gfm





Bezug
                
Bezug
dezimalzahlen in brüche umwand: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:44 Mi 12.05.2010
Autor: manfreda

Haallo

ich danke euch vielmaals!!!!!!!!


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]