matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare Algebradeterminanten
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Lineare Algebra" - determinanten
determinanten < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

determinanten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:11 Fr 19.01.2007
Autor: lani

Aufgabe
Berechnen sie die Determinanten der folgenden Matrizen:
[mm] a)\pmat{ e^x & e^-2x \\ e^x & -2e^-2x } [/mm]
[mm] b)\pmat{ 1 + cos x & 1 + sinx & 1 \\ 1- sinx & 1 + cos x & 1 \\ 1 & 1 & 1 } [/mm]
[mm] c)\pmat{ 1 & 1 & 0 & 2 & 4 \\ -1 & 1 & 4 & 3 & 1 \\ 2 & -4 & 1 & 9 & -2 \\ 4 & 0 & 3 & 1 & 3 \\ 0 & 2 & 3 & 5 & 4 \\ } [/mm]


hallo

also bei a hab ich einfach :

[mm] det(a)=(e^x [/mm] * (-2e^-2x)) - ( [mm] e^x [/mm] * e^-2) = (-2e^-x) - [mm] (e^x-2) [/mm] ?? was meint ihr..bin mir überhaupt nicht sicher?!

bei b) hab ich noch keinen ansatz
c) hab ich mit gauß-aldorithmus in stufenform gebracht:

1 1 0 2   4
0 1 2 2,5 2,5
0 0 1 0   1
0 0 0 1   0,4
0 0 0 0   -12,8

also det(c)= 1*1*1*1* -12,8 = -12,8 ??

hoffe ihr könnt mir helfn


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
determinanten: Antwort
Status: (Antwort) fertig Status 
Datum: 15:59 Fr 19.01.2007
Autor: zahlenspieler

Hallo lani,
> Berechnen sie die Determinanten der folgenden Matrizen:
>  [mm]a)\pmat{ e^x & e^-2x \\ e^x & -2e^-2x }[/mm]
>  [mm]b)\pmat{ 1 + cos x & 1 + sinx & 1 \\ 1- sinx & 1 + cos x & 1 \\ 1 & 1 & 1 }[/mm]
>  
> [mm]c)\pmat{ 1 & 1 & 0 & 2 & 4 \\ -1 & 1 & 4 & 3 & 1 \\ 2 & -4 & 1 & 9 & -2 \\ 4 & 0 & 3 & 1 & 3 \\ 0 & 2 & 3 & 5 & 4 \\ }[/mm]
>  
> hallo
>  
> also bei a hab ich einfach :
>  
> [mm]det(a)=(e^x[/mm] * (-2e^-2x)) - ( [mm]e^x[/mm] * e^-2) = (-2e^-x) -
> [mm](e^x-2)[/mm] ?? was meint ihr..bin mir überhaupt nicht sicher?!
>  

Da hast Du Dich irgendwo verrechnet :-).

> bei b) hab ich noch keinen ansatz

Entweder mit der Sarrus-Regel. Oder:
- Du vertauschst zunächst Zeilen 1 und 3 und dann Zeilen 2 und 3 von B.
- Dann subtrahierst Du Spalte 1 von Spalten 2 und 3.
(Durch Addition eines "Vielfachen" einer Zeile/Spalte zu einer andern ändert sich ja die Determinante nicht.)
Damit hast Du eine 3x3-Matrix, deren 1. Zeile (1,0,0) ist. Dann brauchst Du bei der Berechnung der Det nur die Summanden mit Permutationen in [mm] $S_3$ [/mm] zu berücksichtigen, die die 1 festlassen.

>  c) hab ich mit gauß-aldorithmus in stufenform gebracht:
>  
> 1 1 0 2   4
>  0 1 2 2,5 2,5
>  0 0 1 0   1
>  0 0 0 1   0,4
>  0 0 0 0   -12,8
>  
> also det(c)= 1*1*1*1* -12,8 = -12,8 ??

[ok]
Mfg
zahlenspieler

Bezug
        
Bezug
determinanten: c) nicht OK
Status: (Antwort) fertig Status 
Datum: 16:04 Fr 19.01.2007
Autor: statler

Hallo!

> [mm]c)\pmat{ 1 & 1 & 0 & 2 & 4 \\ -1 & 1 & 4 & 3 & 1 \\ 2 & -4 & 1 & 9 & -2 \\ 4 & 0 & 3 & 1 & 3 \\ 0 & 2 & 3 & 5 & 4 \\ }[/mm]

>  c) hab ich mit gauß-aldorithmus in stufenform gebracht:
>  
> 1 1 0 2   4
>  0 1 2 2,5 2,5
>  0 0 1 0   1
>  0 0 0 1   0,4
>  0 0 0 0   -12,8
>  
> also det(c)= 1*1*1*1* -12,8 = -12,8 ??

Das kann nicht stimmen, weil die ursprüngliche Matrix nur aus ganzen Zahlen besteht, dann muß die Determinante auch ganzzahlig sein.

Gruß aus HH-Harburg
Dieter


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]