matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDeterminantendeterminante einer 4x4 matrix
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Determinanten" - determinante einer 4x4 matrix
determinante einer 4x4 matrix < Determinanten < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

determinante einer 4x4 matrix: was mache ich falsch?
Status: (Frage) beantwortet Status 
Datum: 17:44 Mi 06.07.2011
Autor: jim-bob

Aufgabe
berechnen der determinate der nachfolgenden matrizen:

f) F= [mm] \pmat{ 5 & 4 & 2 & 1 \\ 2 & 3 & 1 & -1 \\ -5 & -7 & -3 & 9 \\ 1 & -2 & -1 & 4 } [/mm]


hallo zusammen...

ich habe im buch " mathe für biologen" auf der seite 102 die aufgabe 5.4 gerechnet...

leider bekomme ich bei der aufgabe f ein anderes ergebniss raus, was das lösungsheft sagt.

laut diesem soll detF= 45 sein.

ich jedoch bekomme detF=1125

schreibe hier mal meinen rechen weg hin:

detF= a_11*det( Â - [mm] (L^T [/mm] * ß)/a_11)

a_11 = 5

 = [mm] \pmat{ 3 & 1 & -1 \\ -7 & -3 & 9 \\ -2 & -1 & 4 } [/mm]

L= (2 -5 1)
ß= ( 4 2 1)

[mm] L^T [/mm] * ß = [mm] \pmat{ 2 \\ -5 \\ 1 } [/mm] * (4 2 1) = [mm] \pmat{ 8 & 4 & 2 \\ -20 & -10 & -5 \\ 4 & 2 & 1 } [/mm]

damit habe ich dann:

detF = 5*det( [mm] \pmat{ 3 & 1 & -1 \\ -7 & -3 & 9 \\ -2 & -1 & 4 }- [/mm] 1/5 [mm] \pmat{ 8 & 4 & 2 \\ -20 & -10 & -5 \\ 4 & 2 & 1 }) [/mm]

das ist dann:
detF = 5*det (  [mm] \pmat{ 1,4 & 0,2 & -1,4 \\ -3 & -1 & 10 \\ -2,8 & -1,42 & 3,8 } [/mm]

detF= det [mm] \pmat{ 7 & 1 & -7 \\ -15 & -5 & 50 \\ -14 & -7 & 19 } [/mm]

so wenn ich nun diese 3x3 matrix nach saurus ausrechne, komme ich auf meine 1250?

Wo ist nun mein Fehler?



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
determinante einer 4x4 matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 18:38 Mi 06.07.2011
Autor: reverend

Hallo jim-bob,

da ist nur ein einziger Fehler.

> berechnen der determinate der nachfolgenden matrizen:
>  
> f) F= [mm]\pmat{ 5 & 4 & 2 & 1 \\ 2 & 3 & 1 & -1 \\ -5 & -7 & -3 & 9 \\ 1 & -2 & -1 & 4 }[/mm]
>  
> hallo zusammen...
>  
> ich habe im buch " mathe für biologen" auf der seite 102
> die aufgabe 5.4 gerechnet...
>  
> leider bekomme ich bei der aufgabe f ein anderes ergebniss
> raus, was das lösungsheft sagt.
>  
> laut diesem soll detF= 45 sein.

Ja, das ist ok.

> ich jedoch bekomme detF=1125
>  
> schreibe hier mal meinen rechen weg hin:
>  
> detF= a_11*det( Â - [mm](L^T[/mm] * ß)/a_11)
>  
> a_11 = 5
>  
> Â = [mm]\pmat{ 3 & 1 & -1 \\ -7 & -3 & 9 \\ -2 & -1 & 4 }[/mm]
>  
> L= (2 -5 1)
>  ß= ( 4 2 1)
>  
> [mm]L^T[/mm] * ß = [mm]\pmat{ 2 \\ -5 \\ 1 }[/mm] * (4 2 1) = [mm]\pmat{ 8 & 4 & 2 \\ -20 & -10 & -5 \\ 4 & 2 & 1 }[/mm]
>  
> damit habe ich dann:
>  
> detF = 5*det( [mm]\pmat{ 3 & 1 & -1 \\ -7 & -3 & 9 \\ -2 & -1 & 4 }-[/mm]
> 1/5 [mm]\pmat{ 8 & 4 & 2 \\ -20 & -10 & -5 \\ 4 & 2 & 1 })[/mm]
>  
> das ist dann:
> detF = 5*det (  [mm]\pmat{ 1,4 & 0,2 & -1,4 \\ -3 & -1 & 10 \\ -2,8 & -1,42 & 3,8 }[/mm]
>  
> detF= det [mm]\pmat{ 7 & 1 & -7 \\ -15 & -5 & 50 \\ -14 & -7 & 19 }[/mm]

Nein, eben nicht. Wenn Du die 5 in die Matrix hineinmultiplizierst, dann nur in eine Zeile oder eine Spalte.

So wie hier, wenn Du jedes Element der Matrix mit 5 multiplizierst, vergrößert sich die Determinante um den Faktor [mm] 5^3=125. [/mm] Deswegen ist Dein Ergebnis auch gerade 25mal so groß wie das richtige.

> so wenn ich nun diese 3x3 matrix nach saurus ausrechne,
> komme ich auf meine 1250?

Du meinst sicher die Regel von Sarrus, und das Ergebnis ist, wie du oben richtig angegeben hattest, 1125.

Und 1125=25*45.

> Wo ist nun mein Fehler?

Grüße
reverend


Bezug
                
Bezug
determinante einer 4x4 matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:07 Mi 06.07.2011
Autor: jim-bob

ich habe ja aber auch vorher die 1/5 zu allen komponeten der matrix multipliziert... ist das dann auch falsch???

kann ich mir die zeile oder spalte selber aussuchen, mit der ich 5 multipliziere???
ist das immer so, wenn ich eine matrix habe???

also sprich: 5* [mm] \pmat{ a11 & a12 \\ a21 & a22 } [/mm]
ds ich dann nur [mm] \pmat{ a11*5 & a12*5 \\ 3 & 4 } [/mm] rechnen muss???
mir wurde gestern gesagt, dass ich immer alle mit 5 multiplizieren muss...


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Bezug
                        
Bezug
determinante einer 4x4 matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 19:15 Mi 06.07.2011
Autor: reverend

Hallo nochmal,

> ich habe ja aber auch vorher die 1/5 zu allen komponeten
> der matrix multipliziert... ist das dann auch falsch???
>  
> kann ich mir die zeile oder spalte selber aussuchen, mit
> der ich 5 multipliziere???
>  ist das immer so, wenn ich eine matrix habe???
>  
> also sprich: 5* [mm]\pmat{ a11 & a12 \\ a21 & a22 }[/mm]
>  ds ich
> dann nur [mm]\pmat{ a11*5 & a12*5 \\ 3 & 4 }[/mm] rechnen muss???
>  mir wurde gestern gesagt, dass ich immer alle mit 5
> multiplizieren muss...

Das ist auch so.
Bei Determinanten gilt aber für [mm] a\not=1 [/mm]

[mm] det(a*A)\not=a*det(A) [/mm]

Wenn A eine [mm] n\times{n} [/mm] -Matrix ist, gilt nämlich [mm] det(a*A)=a^n*det(A) [/mm]

Grüße
reverend


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]