matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDeterminantendet(A*B)=det(A)*det(B)
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Determinanten" - det(A*B)=det(A)*det(B)
det(A*B)=det(A)*det(B) < Determinanten < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

det(A*B)=det(A)*det(B): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:26 So 02.05.2010
Autor: MontBlanc

Aufgabe
Beweisen Sie, dass für 2x2 matrizen gilt det(A*B)=det(A)*det(B)

Hallo,

also für 2x2 matrizen war das kein Problem, das ist ja eher eine stupide Schreibarbeit. Auf der Lösung unseres Aufgabenblattes steht nun, ob wir sehen könnten, wie man das ganze eleganter und allgemeingültiger beweisen könnten.
Da kommt dann auch meine Frage ins Spiel. Ich habe Beweise mit der Leibniz-Formel gefunden, die mir aber nicht wirklich weitergeholfen haben, da wir die nie angewendet bzw. definiert haben. Meine Idee war nun, das ganze mit dem Laplace'schen Entwicklungssaz zu beweisen, also allgemein für eine Determinante mit der Entwicklung nach der ersten Zeile:

[mm] det(A)=\summe_{j=1}^{n}(-1)^{1+j}*a_{1j}*|A_{1j}| [/mm]

Das Problem was ich nun hatte war, dass mir nicht ganz klar war, wie ich die Determinante für A*B aufschreiben sollte, die Idee war

[mm] det(A*B)=\summe_{j=1}^{n}\left(\summe_{j=1}^{n}a_{1j}*b_{j1}\right)*(-1)^{1+j}*|AB_{1j}| [/mm]

Komme ich damit voran, oder ist das so sehr kompliziert zu machen, ich weiß nämlich nicht was mit [mm] |AB_{1j}| [/mm] passiert, das ist ja wieder eine Determinante.

LG



        
Bezug
det(A*B)=det(A)*det(B): Antwort
Status: (Antwort) fertig Status 
Datum: 14:52 So 02.05.2010
Autor: steppenhahn

Hallo!

> Beweisen Sie, dass für 2x2 matrizen gilt
> det(A*B)=det(A)*det(B)

> [mm]det(A)=\summe_{j=1}^{n}(-1)^{1+j}*a_{1j}*|A_{1j}|[/mm]
>  
> Das Problem was ich nun hatte war, dass mir nicht ganz klar
> war, wie ich die Determinante für A*B aufschreiben sollte,
> die Idee war
>  
> [mm]det(A*B)=\summe_{j=1}^{n}\left(\summe_{j=1}^{n}a_{1j}*b_{j1}\right)*(-1)^{1+j}*|AB_{1j}|[/mm]
>  
> Komme ich damit voran, oder ist das so sehr kompliziert zu
> machen, ich weiß nämlich nicht was mit [mm]|AB_{1j}|[/mm]
> passiert, das ist ja wieder eine Determinante.

Ich kann deinem Ansatz gerade nicht ansehen, wie er zum Ziel führt. Wir haben das in der Vorlesung damals so bewiesen:
A [mm] \in K^{n\times n} [/mm]

Fall 1: rang(A) < n.
Dann folgt relativ schnell det(A*B) = 0.

Fall 2: rang(A) = n, d.h. A regulär bzw. invertierbar. Dann lässt sich A als Produkt von Elementarmatrizen schreiben. Man muss jetzt also nur zeigen, dass gerade det(M*B)=det(M)*det(B) ist, wenn M Elementarmatrix.

Habt ihr das zur Verfügung?

Grüße,
Stefan

Bezug
                
Bezug
det(A*B)=det(A)*det(B): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:05 So 02.05.2010
Autor: MontBlanc

Hallo Stefan,

nein, das haben wir nicht zur Verfügung, zumindest nicht in dem Kurs alleine. Für sich ist sowohl der Rang einer Matrix als auch die Determinante definiert, die Verbindung aber nicht hergestellt.

Naja, da kann ich wohl nichts machen!

Danke Dir für deine Antwort!

LG

Bezug
        
Bezug
det(A*B)=det(A)*det(B): Antwort
Status: (Antwort) fertig Status 
Datum: 11:19 Mo 03.05.2010
Autor: fred97

Bei 2x2-Matrizen kann man

            det(A*B)=det(A)*det(B)

doch zu Fuß nachrechnen !!!

FRED

Bezug
                
Bezug
det(A*B)=det(A)*det(B): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:03 Mo 03.05.2010
Autor: MontBlanc

Hallo fred,

ja das schrieb ich ja oben schon, das habe ich auch gemacht. nur wurden wir auf dem lösungsblatt aufgefordert doch über einen "eleganteren" Beweis nachzudenken, und damit hatte ich mich beschäftigt.

Lg

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]