matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Gleichungssystemedet(A)=1 => LGS ist ganzzahlig
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Gleichungssysteme" - det(A)=1 => LGS ist ganzzahlig
det(A)=1 => LGS ist ganzzahlig < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

det(A)=1 => LGS ist ganzzahlig: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 12:00 Mo 10.11.2008
Autor: uniklu

Aufgabe
Sei [mm] A\vec{x} [/mm] = [mm] \vec{b} [/mm] ein lineares Gleichungssystem in n Gleichungen und n Unbekannten mit ganzzahligen Koeffizienten und Konstanten.
Zeige, dass für det(A) = 1 die Lösung [mm] \vec{x} [/mm] nur ganzzahlige Komponennte hat.

Hallo!

Bei meiner Suche nach den Eigenschaften der Determinante, die bei der Beweisargumentation helfen könnten, bin ich auf die Cramerschen Regeln gestoßen.

[mm] x_i [/mm] = [mm] det(A_i) [/mm] / det(A)

wobei in [mm] A_i [/mm] die i-te Spalte durch den Vektor [mm] \vec{b} [/mm] ersetzt wird.
Das ganze scheint mir auf den ersten Blick zu trivial für einen Beweis - da jedes "element" nur durch 1 dividiert wird. Außerdem haben wir diese Regel nirgendwo besprochen.

Wie könnte man das ganze mittels Widerspruch beweisen?

lg


        
Bezug
det(A)=1 => LGS ist ganzzahlig: Determinanten
Status: (Antwort) fertig Status 
Datum: 12:23 Mo 10.11.2008
Autor: Al-Chwarizmi


> Sei [mm]A\vec{x}[/mm] = [mm]\vec{b}[/mm] ein lineares Gleichungssystem in n
> Gleichungen und n Unbekannten mit ganzzahligen
> Koeffizienten und Konstanten.
>  Zeige, dass für det(A) = 1 die Lösung [mm]\vec{x}[/mm] nur
> ganzzahlige Komponenten hat.

  

> Bei meiner Suche nach den Eigenschaften der Determinante,
> die bei der Beweisargumentation helfen könnten, bin ich auf
> die Cramerschen Regeln gestoßen.
>  
> [mm]x_i[/mm] = [mm]det(A_i)[/mm] / det(A)
>  
> wobei in [mm]A_i[/mm] die i-te Spalte durch den Vektor [mm]\vec{b}[/mm]
> ersetzt wird.
>  Das ganze scheint mir auf den ersten Blick zu trivial für
> einen Beweis - da jedes "element" nur durch 1 dividiert
> wird. Außerdem haben wir diese Regel nirgendwo besprochen.

    Diese Überlegung mit Cramer ist aber hier sicher
    so ungefähr der eleganteste Beweis.

    Wenn du dich nicht darauf stützen willst (oder darfst),
    gäbe es vielleicht die Möglichkeit, Aussagen über die inverse
    Matrix [mm] A^{-1} [/mm] zu machen. Könnte man z.B. zeigen,
    dass deren Elemente ganzzahlig sind, wäre man im
    Prinzip fertig. Wegen det(A)=1 existiert ja [mm] A^{-1}, [/mm] und
    es gilt [mm] det(A^{-1})=1. [/mm]
    Jetzt kommt's drauf an, was du von Determinanten
    noch so weisst ...
    Falls ihr z.B. die "Adjunkte" einer Matrix besprochen habt,
    sollte der Beweis leicht fallen - übrigens steckt dahinter
    eigentlich dasselbe wie (in einfacherer Form) hinter der
    Cramerschen Regel.

> Wie könnte man das ganze mittels Widerspruch beweisen?    [keineahnung]


Gruß    Al-Chw.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]