matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare Algebradet >0 => positiv definit
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Lineare Algebra" - det >0 => positiv definit
det >0 => positiv definit < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

det >0 => positiv definit: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 17:43 Di 03.07.2007
Autor: CPH

Aufgabe
Sei n [mm] \ge [/mm] 1 eine ganze Zahl, und sei
A = [mm] (a_{ij})_{1\le i;j \le n} \in M_n(\IR) [/mm]
eine symmetrische Matrix.
Zeigen Sie, dass die folgenden Aussagen äquivalent sind.
1. A ist positiv definit.
2. [mm] det(A_k) [/mm] > 0 für alle k [mm] \in \IN [/mm] mit 1 [mm] \le [/mm] k [mm] \le [/mm] n, wobei
[mm] A_k [/mm] := [mm] (a_{ij})_{1\lei;j\le k} \in M_k(\IR): [/mm]
3. Alle Eigenwerte von A gehören zu [mm] \IR [/mm] >0.
Hinweis : Sie können die Aussage (2 =>1) durch Induktion nach n beweisen.

Hallo,

ich habe offensichtlich die Vorlesung zu lange nicht nachbearbeitet,
gibt es irgendwelche leicht nachvollziehbaren Beweise?

ich habe noch keine Ahnung, wie ich irgendetwas zeigen soll.

das einzige was mir klar ist ist, das:

Alle EW (Eigenwerte) von A >0, A symmetrisch => A diagonalisierbar => Produkt der EWs = Determinante. also aus 3 folgt direkt 2

gibt es ähnliche Argumente für  2=> 1 und 1=>3?  

1=> 3 müsste doch  so gehen:

A symmetrisch => A normal => A diagonalisierbar.
A pos. Definit => [mm] \forall \lambda [/mm]  auf der Hauptdiagonalen gilt, dass sie >0 sind
=> alle EW's sind  auf der Spur von der Diagonalmatrix (ähnlich zu A) und alle sind >0 da auch diese Matrix pos. Definit.

wenn diese implikationen stimmen fehlt nur noch

2=>1.

Kann mir jemand eine Idee für 2=>1 geben, oder den beweis teilweise ausführen?

MfG

Cph

Vielen Dank für eure Hilfe.



        
Bezug
det >0 => positiv definit: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 Do 05.07.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]