matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDeterminantendet.
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Determinanten" - det.
det. < Determinanten < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

det.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:26 Sa 19.04.2008
Autor: lenz

Aufgabe
sei K ein körper und [mm] A=(a_{ij}) \in [/mm] M(n [mm] \times [/mm] n,K).
zeigen sie dass dann gilt:
[mm] det(a_{ij})=det((-1)^{i+j} a_{ij}). [/mm]
hinweis:weisen sie nach dass die abbildung [mm] M(n\times [/mm] n,K) [mm] \rightarrow [/mm] K
A [mm] \mapsto det((-1)^{i+j}a_{ij} [/mm] eine determinantenabbildung ist

hallo
kann mir jemand sagen was mit [mm] det(a_{ij}) [/mm] gemeint ist?
soll das det(A) sein,oder die entwicklung nach irgendeiner zeile oder spalte?
gruß lenz

        
Bezug
det.: Antwort
Status: (Antwort) fertig Status 
Datum: 21:50 Sa 19.04.2008
Autor: logarithmus


> sei K ein körper und [mm]A=(a_{ij}) \in[/mm] M(n [mm]\times[/mm] n,K).
>  zeigen sie dass dann gilt:
>  [mm]det(a_{ij})=det((-1)^{i+j} a_{ij}).[/mm]
>  hinweis:weisen sie
> nach dass die abbildung [mm]M(n\times[/mm] n,K) [mm]\rightarrow[/mm] K
> A [mm]\mapsto det((-1)^{i+j}a_{ij}[/mm] eine determinantenabbildung
> ist
>  hallo
>  kann mir jemand sagen was mit [mm]det(a_{ij})[/mm] gemeint ist?

Ich denke, hier ist gemeint: det(A) = det [mm] ((a_{ij})). [/mm]

>  soll das det(A) sein,oder die entwicklung nach irgendeiner
> zeile oder spalte?
>  gruß lenz

Also hier meint man, wenn das Vorzeichen von jedem Eintrag [mm] a_{ij} [/mm] von + nach - bzw. von - nach + geändert wird, dass es sich weiterhin um eine Determinanten handelt, und zwar dieselbe Determinante mit demselben Wert:
also [mm] det((a_{ij})) [/mm] = [mm] det((-1)^{i+j}(a_{ij})). [/mm]

Für den Beweis versuche die Formel von Leibnitz zu benutzen.
[mm] $det((a_{ij})) [/mm] = [mm] \summe_{(\sigma_1,\cdots,\sigma_n)\in perm(n)}sign((\sigma_1,\cdots,\sigma_n))a_{\sigma_1,1}\cdot...\cdot a_{\sigma_n,n}$ [/mm] .
Dann ist
[mm] $det((-1)^{i+j}(a_{ij})) [/mm] = [mm] \summe_{(\sigma_1,\cdots,\sigma_n)\in perm(n)}sign((\sigma_1,\cdots,\sigma_n))(-1)^{\sigma_1+1}a_{\sigma_1,1}\cdot...\cdot (-1)^{\sigma_n+n}a_{\sigma_n,n} [/mm] = ... $

Gruss,
logarithmus

Bezug
                
Bezug
det.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:57 Sa 19.04.2008
Autor: lenz

danke
ich werds versuchen
lenz

Bezug
                
Bezug
det.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:15 So 20.04.2008
Autor: briddi

Wenn man die Aufgabe ohne Leibniz lösen möchte, sondern so wie in dem Hinweis angegeben,müsste es doch aber ausreichen die Determinanteneigenschaften Linearität,alternierend und normiert zu zeigen oder?
und wenn die gelten, dann folgt aus der Eindeutigkeit der Determinantenabbildung die Bahauptung.

Bezug
                        
Bezug
det.: Antwort
Status: (Antwort) fertig Status 
Datum: 16:05 So 20.04.2008
Autor: felixf

Hallo

> Wenn man die Aufgabe ohne Leibniz lösen möchte, sondern so
> wie in dem Hinweis angegeben,müsste es doch aber ausreichen
> die Determinanteneigenschaften Linearität,alternierend und
> normiert zu zeigen oder?

Genau.

>  und wenn die gelten, dann folgt aus der Eindeutigkeit der
> Determinantenabbildung die Bahauptung.

Ja, so ist es. Und das Nachrechnen ist hier nicht allzu schwer, hauptsaechlich ist's Schreibarbeit :)

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]