matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer Veränderlichendefinitheit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Reelle Analysis mehrerer Veränderlichen" - definitheit
definitheit < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

definitheit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:31 Mi 01.07.2009
Autor: Der_Marder

ich wollte fragen, ob ich die richtige auffassung von negativ und positiv definit habe:

man muss zwei sachen kontrollieren:
1. die determinante der matrix muss größer als 0 sein, sonst ist sie indefinit
2. der erste eintrag in der matrix zeigt mit dem vorzeichen die definitheit.

dann wäre

[mm] \pmat{ 2 & 0 \\ 0 & 2 } [/mm] positiv definit beispielsweise

[mm] \pmat{ -2 & 0 \\ 0 & -2 } [/mm] negativ definit

und

[mm] \pmat{ 2 & 0 \\ 0 & -2 } [/mm] wäre indefinit

das kommt mir irgendwie zu einfach vor.

        
Bezug
definitheit: Antwort
Status: (Antwort) fertig Status 
Datum: 11:39 Mi 01.07.2009
Autor: schachuzipus

Hallo Der_Marder,

> ich wollte fragen, ob ich die richtige auffassung von
> negativ und positiv definit habe:
>  
> man muss zwei sachen kontrollieren:
>  1. die determinante der matrix muss größer als 0 sein,
> sonst ist sie indefinit
>  2. der erste eintrag in der matrix zeigt mit dem
> vorzeichen die definitheit.

Das gilt für [mm] $2\times [/mm] 2$-Matrizen, allg. ist es das Hauptminorenkriterium ...

>
> dann wäre
>  
> [mm]\pmat{ 2 & 0 \\ 0 & 2 }[/mm] positiv definit [ok] beispielsweise
>  
> [mm]\pmat{ -2 & 0 \\ 0 & -2 }[/mm] negativ definit [ok]
>  
> und
>
> [mm]\pmat{ 2 & 0 \\ 0 & -2 }[/mm] wäre indefinit [ok]
>  
> das kommt mir irgendwie zu einfach vor.

Ja, das ist es bei [mm] $2\times [/mm] 2$-Matrizen i.d.R., hier hast du besonders einfache Matrizen als Bsp. gewählt, deren Eigenwerte ja schon auf der Diagonalen stehen, daran kannst du die Definitheit ja auch ablesen ...

nur positive Eigenwerte --> pos. definit

nur neg. Eigenwerte --> neg. definit

pos. und neg. Eigenwerte --> indef.

LG

schachuzipus



Bezug
                
Bezug
definitheit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:56 Mi 01.07.2009
Autor: Der_Marder

Wann gäbe es damit probleme? kann ich bei 3 x 3 oder 4 x 4 matrizen die matrix nicht einfach in dreiecksform bringen und dann die diagonale betrachten?

Bezug
                        
Bezug
definitheit: Antwort
Status: (Antwort) fertig Status 
Datum: 12:01 Mi 01.07.2009
Autor: schachuzipus

Hallo nochmal,

> Wann gäbe es damit probleme? kann ich bei 3 x 3 oder 4 x 4
> matrizen die matrix nicht einfach in dreiecksform bringen
> und dann die diagonale betrachten?

Das kannst du natürlich machen, ist aber nicht "ungefährlich" im Sinne von: es ist fehleranfällig.

Du musst schließlich die []Rechenregeln für Determinaten beachten, die Determinante ändert sich bei gewissen Zeilenumformungen ...


Außerdem musst du ja alle Hauptunterdeterminaten berechnen, da würde ich mit dem vorherigen Umformen in ZSF höllisch aufpasen ;-)


LG

schachuzipus


Bezug
                                
Bezug
definitheit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:25 Mi 01.07.2009
Autor: Der_Marder

wie kriege ich dann am besten raus, wann eine matrix positiv oder negativ definit ist? alle eigenwerte berechnen?

Bezug
                                        
Bezug
definitheit: Antwort
Status: (Antwort) fertig Status 
Datum: 14:53 Mi 01.07.2009
Autor: schachuzipus

Hallo nochmal,

> wie kriege ich dann am besten raus, wann eine matrix
> positiv oder negativ definit ist? alle eigenwerte
> berechnen?

Ja, das ist eine Möglichkeit, "dein" Hauptminorenkriterium ist aber auch ok.

Sagen wir, du hast eine [mm] $4\times [/mm] 4$-Matrix [mm] $A=\pmat{a_{11}&a_{12}&a_{13}&a_{14}\\a_{21}&a_{22}&a_{23}&a_{24}\\a_{31}&a_{32}&a_{33}&a_{34}\\a_{41}&a_{42}&a_{43}&a_{44}}$, [/mm] dann musst du mit dem Hauptdeterminantenkriterium alle Hauptunterdeterminanten berechnen, also

[mm] $det\pmat{a_{11}}, det\pmat{a_{11}&a_{21}\\a_{21}&a_{22}}, det\pmat{a_{11}&a_{12}&a_{13}\\a_{21}&a_{22}&a_{23}\\a_{31}&a_{32}&a_{33}}$ [/mm] und $det(A)$


Das das Kriterium, das du im ersten post beschrieben hast, ausgedehnt auf "größere" Matrizen ...

Wobei man da ein bisschen aufpassen sollte, denn zum einen ist das Kriterium nicht für Semidefinitheit geeignet, zum anderen gilt (für eine [mm] $n\times [/mm] n$-Matrix $A$):

$A$ ist positiv definit, falls [mm] $det(A_k)>0$ [/mm] für alle [mm] $1\le k\le [/mm] n$

$A$ ist negativ definit, falls [mm] $(-1)^k\cdot{}det(A_k)>0$ [/mm] für alle [mm] $1\le k\le [/mm] n$

und [mm] $A_k$ [/mm] sind die "Streichmatrizen" wie oben im Bsp. mit der [mm] $4\times [/mm] 4$-Matrix

LG

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]