matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Matrizendarstellung der Einträge matri
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra - Matrizen" - darstellung der Einträge matri
darstellung der Einträge matri < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

darstellung der Einträge matri: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:03 Fr 27.01.2012
Autor: EvelynSnowley2311

Aufgabe
die konugiert-transponierte Matrix C* einer Matrix C mit komplexen Einträgen [mm] C_{ij} [/mm] ist definiert durch [mm] c_{ji} [/mm] * = [mm] \overline{C_{ij}} [/mm] . Seien m,n,p [mm] \in \IN [/mm] und A [mm] \in \IC^{m x n} [/mm] , B [mm] \in \IC^{n x p} [/mm] . Zeigen Sie, dass

(AB)* = B*A*

huhu, eine alte Übungsaufgabe von mir die ich nochma durchgehen möchte.

Die Einträge von einer Matrix [mm] \IC_{ji} [/mm] kann man so darstellen oder?

[mm] \summe_{k=j,i}^{n} a_{ji} \* \IC_{ji} [/mm]

        
Bezug
darstellung der Einträge matri: Antwort
Status: (Antwort) fertig Status 
Datum: 08:58 Sa 28.01.2012
Autor: fred97


> die konugiert-transponierte Matrix C* einer Matrix C mit
> komplexen Einträgen [mm]C_{ij}[/mm] ist definiert durch [mm]c_{ji}[/mm] * =
> [mm]\overline{C_{ij}}[/mm] . Seien m,n,p [mm]\in \IN[/mm] und A [mm]\in \IC^{m x n}[/mm]
> , B [mm]\in \IC^{n x p}[/mm] . Zeigen Sie, dass
>
> (AB)* = B*A*
>  huhu, eine alte Übungsaufgabe von mir die ich nochma
> durchgehen möchte.
>  
> Die Einträge von einer Matrix [mm]\IC_{ji}[/mm] kann man so
> darstellen oder?
>  
> [mm]\summe_{k=j,i}^{n} a_{ji} \* \IC_{ji}[/mm]  

Was da oben steht ist völliger Unsinn !

Eine Matrix C hat die Darstellung $C=( [mm] c_{ji} [/mm] )$

"Kreuze" die j-te Zeile mit der i-ten Spalte: dort steht der Eintrag $ [mm] c_{ji} [/mm] $

FRED


Bezug
        
Bezug
darstellung der Einträge matri: Antwort
Status: (Antwort) fertig Status 
Datum: 09:58 Sa 28.01.2012
Autor: Al-Chwarizmi


> die konugiert-transponierte Matrix C* einer Matrix C mit
> komplexen Einträgen [mm]C_{ij}[/mm] ist definiert durch [mm]c_{ji}[/mm] * =
> [mm]\overline{C_{ij}}[/mm] . Seien m,n,p [mm]\in \IN[/mm] und A [mm]\in \IC^{m x n}[/mm]
> , B [mm]\in \IC^{n x p}[/mm] . Zeigen Sie, dass
>
> (AB)* = B*A*
>  huhu, eine alte Übungsaufgabe von mir die ich nochma
> durchgehen möchte.
>  
> Die Einträge von einer Matrix [mm]\IC_{ji}[/mm] kann man so
> darstellen oder?
>  
> [mm]\summe_{k=j,i}^{n} a_{ji} \* \IC_{ji}[/mm]  


Hallo,

du machst hier ein Durcheinander mit den verschiedenen "C" ,
die hier vorkommen: einerseits die Grundmenge [mm] \IC [/mm] der
komplexen Zahlen, aus welcher die Elemente der Matrizen
stammen, und dann die Matrizen C und [mm] C^{\ast}. [/mm] Mein
Vorschlag: Schreibe für das Matrixprodukt M anstatt C, also

    $\ M:=A*B$

    $\  [mm] M^{\ast}\ [/mm] :=\ [mm] \overline{M}^T$ [/mm]

    $\  [mm] M^{\ast}_{j\,i}\ [/mm] :=\ [mm] \overline{M_{i\,j}}$ [/mm]

(Bemerkung: beim Schreiben solcher Ausdrücke habe ich
auch ein wenig Mühe mit den $\ T_EX$ - Symbolen, insbe-
sondere mit den hochgestellten Sternchen ...)

LG



Bezug
                
Bezug
darstellung der Einträge matri: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:31 Sa 28.01.2012
Autor: EvelynSnowley2311

hey

alle schön und gut, wenn meine Darstellung falsch ist, wie stellt mans richtig da? in der Musterlösung hatten wir was halt mit Summenzeichen gemacht.

Bezug
                        
Bezug
darstellung der Einträge matri: Antwort
Status: (Antwort) fertig Status 
Datum: 17:15 Sa 28.01.2012
Autor: Al-Chwarizmi


> hey
>  
> alle schön und gut, wenn meine Darstellung falsch ist, wie
> stellt mans richtig da? in der Musterlösung hatten wir was
> halt mit Summenzeichen gemacht.

Klar, in der Berechnung des Produkts kommen dann
natürlich Summen vor:

> die konugiert-transponierte Matrix C* einer Matrix C mit
> komplexen Einträgen [mm]C_{ij}[/mm] ist definiert durch [mm]c_{ji}[/mm] * =
> [mm]\overline{C_{ij}}[/mm] . Seien m,n,p [mm]\in \IN[/mm] und A [mm]\in \IC^{m x n}[/mm]
> , B [mm]\in \IC^{n x p}[/mm] . Zeigen Sie, dass

>     (AB)* = B*A*


    $\ M:=A*B$

    $\  [mm] M^{\ast}\ [/mm] :=\ [mm] \overline{M}^T$ [/mm]

    [mm] $\mbox{\huge {\text{\rm{ M}}_{j\,i}^{\ast}\ :=\ \overline{M_{i\,j}}\ =\ \overline{\summe_{k=1}^{n}A_{ik}*B_{kj}}}}$ [/mm]

So, nun kann man darauf einmal die Regeln für die
Konjugation anwenden.
Nachher  $\ [mm] B^{\ast}*A^{\ast}$ [/mm]  hinschreiben und ebenfalls
umformen, bis man für beide Rechnungen dasselbe
Ergebnis hat ...

LG



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]