matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Matrizendarstellende Matrix
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra - Matrizen" - darstellende Matrix
darstellende Matrix < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

darstellende Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:12 Do 09.06.2011
Autor: Mandy_90

Aufgabe
Seien K ein Körper, [mm] V=K^{2}, E=\{e_{1},e_{2}\} [/mm] die Standardbasis von [mm] K^{2}, [/mm] f,g [mm] \in End_{K}(V) [/mm] und A die darstellende Matrix von f bzgl. E, B die darstellende Matrix von g bzgl. E.
Man bestimme die darstellende Matrix von f [mm] \otimes [/mm] g bezüglich der Basis [mm] B=\{e_{1} \otimes e_{1},e_{1} \otimes e_{2}, e_{2} \otimes e_{2}, e_{2} \otimes e_{2}\} [/mm] von V [mm] \otmies_{k} [/mm] V.

Hallo ^^

Ich komme bei dieser Aufgabe nicht mehr weiter. Eigentlich weiß ich wie man die darstellende Matrix berechnet, aber hier klappts nicht.

Ich habe zunächst die Basis [mm] B=\{\vektor{1 \\ 0} \otimes \vektor{1 \\ 0} ,\vektor{1 \\ 0} \otimes \vektor{0 \\ 1}, \vektor{0 \\ 1} \otimes \vektor{1 \\ 0}, \vektor{1 \\ 0} \otimes \vektor{1 \\ 0}\}. [/mm]

Jetzt wollte ich die Bilder der einzelnen Basisvektoren berechnen,also z.B.

f [mm] \otimes g(\vektor{1 \\ 0} \otimes \vektor{1 \\ 0})=f(\vektor{1 \\ 0}) \otmies g(\vektor{0 \\ 1})=A*\vektor{1 \\ 0} \otimes B*\vektor{0 \\ 1} [/mm]

Da ich aber nicht weiß wie A und B aussehen,kann ich nicht mehr weiterrechnen.
Kann mir jemand weiterhelfen?

Vielen Dank
lg

        
Bezug
darstellende Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 16:18 Do 09.06.2011
Autor: leduart

Hallo
schreib einfach ne allgemeine Matrix A mit [mm] a_{ik} [/mm] und entsprechend B
du weisst nur, dass es ein Endm. ist also die matrix nicht entartet.
Gruss leduart


Bezug
                
Bezug
darstellende Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:40 Fr 10.06.2011
Autor: Mandy_90

Hallo leduart,

>  schreib einfach ne allgemeine Matrix A mit [mm]a_{ik}[/mm] und
> entsprechend B
>  du weisst nur, dass es ein Endm. ist also die matrix nicht
> entartet.


Ich hab es allgemein versucht, aber jetzt gehts an einer anderen Stelle nicht mehr weiter.

Seien also [mm] A=\pmat{ a_{11} & a_{12} \\ a_{21} & a_{22} } [/mm] und [mm] B=\pmat{ a_{11} & a_{12} \\ a_{21} & a_{22} } [/mm] die angegebenen darstellenden Matrizen.
Ich nehme mir z.B. den ersten Basisvektor und berechne:

[mm] A*\vektor{1 \\ 0} \otimes B*\vektor{1 \\ 0}=\vektor{a_{11} \\ a_{21}} \otimes \vektor{b_{11} \\ b_{21}}. [/mm]

Diesen will ich wieder durch die Basis darstellen,also rechne ich

[mm] a*(\vektor{1 \\ 0} \otimes \vektor{1 \\ 0})+b*(\vektor{1 \\ 0} \otimes \vektor{0 \\ 1})+c*(\vektor{0 \\ 1} \otimes \vektor{1 \\ 0})+d*(\vektor{1 \\ 0} \otimes \vektor{1 \\ 0}). [/mm]

Damit erhalten ich ein LGS:

1. [mm] a+b=a_{11} [/mm]  

2. [mm] c+d=a_{21} [/mm]

3. [mm] a+c=b_{11} [/mm]  

4. [mm] b+d=b_{21} [/mm]

Wenn ich das aber lösen will, fallen die a,b,c,d immer weg und ich bekomme z.B. [mm] a_{11}-b_{11}+a_{21}-b_{21}=0 [/mm] heraus.

Das bringt mir doch nichts, denn ich brauche die a,b,c,d.
Was soll ich denn jetzt machen?

Vielen Dank
lg

Bezug
                        
Bezug
darstellende Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 20:00 Fr 10.06.2011
Autor: rainerS

Hallo!

> Hallo leduart,
>  
> >  schreib einfach ne allgemeine Matrix A mit [mm]a_{ik}[/mm] und

> > entsprechend B
>  >  du weisst nur, dass es ein Endm. ist also die matrix
> nicht
> > entartet.
>  
>
> Ich hab es allgemein versucht, aber jetzt gehts an einer
> anderen Stelle nicht mehr weiter.
>
> Seien also [mm]A=\pmat{ a_{11} & a_{12} \\ a_{21} & a_{22} }[/mm]
> und [mm]B=\pmat{ a_{11} & a_{12} \\ a_{21} & a_{22} }[/mm] die
> angegebenen darstellenden Matrizen.
>  Ich nehme mir z.B. den ersten Basisvektor und berechne:
>  
> [mm]A*\vektor{1 \\ 0} \otimes B*\vektor{1 \\ 0}=\vektor{a_{11} \\ a_{21}} \otimes \vektor{b_{11} \\ b_{21}}.[/mm]
>  
> Diesen will ich wieder durch die Basis darstellen,also
> rechne ich
>  
> [mm]a*(\vektor{1 \\ 0} \otimes \vektor{1 \\ 0})+b*(\vektor{1 \\ 0} \otimes \vektor{0 \\ 1})+c*(\vektor{0 \\ 1} \otimes \vektor{1 \\ 0})+d*(\vektor{1 \\ 0} \otimes \vektor{1 \\ 0}).[/mm]
>  
> Damit erhalten ich ein LGS:
>  
> 1. [mm]a+b=a_{11}[/mm]  
>
> 2. [mm]c+d=a_{21}[/mm]
>  
> 3. [mm]a+c=b_{11}[/mm]  
>
> 4. [mm]b+d=b_{21}[/mm]

Nein, das stimmt nicht. Benutze die Rechenregeln für das Tensorprodukt: Linearität und Assoziativität.

Zunächst mal ist

[mm] \vektor{a_{11} \\ a_{21}} \otimes \vektor{b_{11} \\ b_{21}} = \left(a_{11} \vektor{1 \\ 0} + a_{12} \vektor{0 \\ 1}\right) \otimes \left(b_{11} \vektor{1 \\ 0} + b_{12} \vektor{0 \\ 1}\right) [/mm] ,

und da das Tensorprodukt (bilinear und assoziativ ist:

  [mm]\left(a_{11} \vektor{1 \\ 0} + a_{12} \vektor{0 \\ 1}\right) \otimes \left(b_{11} \vektor{1 \\ 0} + b_{12} \vektor{0 \\ 1}\right) = a_{11}\vektor{1 \\ 0} \otimes \left(b_{11} \vektor{1 \\ 0} + b_{12} \vektor{0 \\ 1}\right) + a_{12} \vektor{0 \\ 1}\otimes \left(b_{11} \vektor{1 \\ 0} + b_{12} \vektor{0 \\ 1}\right) [/mm] .

Dieselben Regeln nochmal angewandt:

  [mm] = a_{11} b_{11} \vektor{1 \\ 0} \otimes \vektor{1 \\ 0} + a_{11} b_{21} \vektor{1 \\ 0} \otimes\vektor{0 \\ 1} + a_{21} b_{11} \vektor{0 \\ 1} \otimes \vektor{1 \\ 0} + a_{21} b_{21} \vektor{0 \\ 1} \otimes\vektor{0 \\ 1} [/mm] .

Viele Grüße
   Rainer

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]