matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenNumerik linearer Gleichungssystemecholesky
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Numerik linearer Gleichungssysteme" - cholesky
cholesky < Lin. Gleich.-systeme < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Numerik linearer Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

cholesky: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:08 Mo 13.11.2006
Autor: AriR

Hey leute,
kann mir einer vielleicht kurz helfen und zwar verstehe ich nicht genau warum die choleskyzerlegung einer matrix nur dann möglich ist, wenn die matrix positiv definit ist. Was passiert denn, wenn sie das nicht ist?

Danke und gruß ari

        
Bezug
cholesky: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:40 Mo 13.11.2006
Autor: Bastiane

Hallo AriR!

> Hey leute,
>  kann mir einer vielleicht kurz helfen und zwar verstehe
> ich nicht genau warum die choleskyzerlegung einer matrix
> nur dann möglich ist, wenn die matrix positiv definit ist.
> Was passiert denn, wenn sie das nicht ist?

Hast du es mal ausprobiert? Es dürfte halt etwas Falsches rauskommen. Die Cholesky-Zerlegung ist aber auch nur ein Sonderfall ich glaube, von der LR-Zerlegung (oder war es etwas anderes?). Jedenfalls wird bei der Cholesky-Zerlegung irgendwo die Eigenschaft der positiv Definitheit ausgenutzt, so dass man quasi nur eine Hälfte berechnen muss und sich die andere aus ich glaube, der Transponierten ergibt.

Vielleicht hilft dir das ja schon mal.

Viele Grüße
Bastiane
[cap]

Bezug
                
Bezug
cholesky: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 05:35 Di 14.11.2006
Autor: AriR

ich habs gerade ausprobiert und dann bei dem letzten diagonalelement der linken dreiecksmartrix eine negative wurzel rausbekommen, kannst du mir vielleicht sange, wie man das auf das problem der definitheit übertragen kann? hab eine negativ definite matrix benutzt. sehe irgendwie den zusammenhang nicht.

gruß ari

Bezug
        
Bezug
cholesky: Antwort
Status: (Antwort) fertig Status 
Datum: 08:05 Di 14.11.2006
Autor: mathemaduenn

Hallo Ari,
Das mit der negativen Wurzel gibt schon einen Anhaltspunkt
Angenommen es gibt eine Cholesky Zerlegung
A=L^TL
Dann gilt
[mm]x^TAx=x^TL^TLx=(Lx)^T(Lx)=y^Ty\ge 0[/mm]
Alles klar?
viele Grüße
mathemaduenn

Bezug
                
Bezug
cholesky: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:20 Di 14.11.2006
Autor: AriR

jo vielen danke. hast du viell noch einen link zu einem skript oder sowas, wo man den kompletten beweis nochmal hat?

gruß ari

Bezug
                        
Bezug
cholesky: Antwort
Status: (Antwort) fertig Status 
Datum: 09:37 Sa 18.11.2006
Autor: mathemaduenn

Hallo Ari,

> skript oder sowas, wo man den kompletten beweis nochmal
> hat?

Ich würde sagen das ist der komplette Beweis. Aber man kann alles sicher ausführlicher schreiben. Was ist denn unklar?
viele Grüße
mathemaduenn

Bezug
                                
Bezug
cholesky: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:40 Sa 18.11.2006
Autor: AriR

also wir hatten in der vorlesung gesagt, dass wenn man eine pos.def. matrix hat, derern cholesky zerlegung existiert.

so wie ich dsa gesehen habe, ist die sache mit der positiv definitheit ein notwendiges aber nicht hinreichendes kriterium. Davon kann es ja eignetlich noch mehr geben, die man dann ja in den voraussetzungen des satzes mit einbringen müsste.

In dem Beweis des Satzes, sehe ich leider auch die stelle nicht, an dem man die pos.def. benutzt.

Hoffe du verstehst ca. was ich meine.

Gruß Ari und danke nochmal

Bezug
                                        
Bezug
cholesky: Antwort
Status: (Antwort) fertig Status 
Datum: 11:06 Sa 18.11.2006
Autor: mathemaduenn

Hallo Ari,
> also wir hatten in der vorlesung gesagt, dass wenn man eine
> pos.def. matrix hat, derern cholesky zerlegung existiert.
>  
> so wie ich dsa gesehen habe, ist die sache mit der positiv
> definitheit ein notwendiges aber nicht hinreichendes
> kriterium. Davon kann es ja eignetlich noch mehr geben, die
> man dann ja in den voraussetzungen des satzes mit
> einbringen müsste.

Es gilt sogar A symm. pos. definit [mm] \gdw [/mm] Cholesky Zerlegung existiert
Du hattest aber ja nach
A symm. nicht pos. definit [mm] \Rightarrow [/mm] Cholesky Zerlegung existiert nicht
Positive Definitheit ist also eine notwendige Bedingung.

> In dem Beweis des Satzes, sehe ich leider auch die stelle
> nicht, an dem man die pos.def. benutzt.

A positiv definit [mm] \gdw x^TAx>0\forall x:\|x\|\not=0 [/mm]  
So kenn ich die Definition. Welche kennst Du? Damit beweist die Zeile das [mm] x^TAx\le0 [/mm] Wegen der Regularität von L kann Lx nicht 0 sein wenn x nicht 0 ist. Also gilt x^TAx>0
Alles klar?
viele Grüße
mathemaduenn


Bezug
                                                
Bezug
cholesky: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:36 Sa 18.11.2006
Autor: AriR

ich meinte eigentlich den beweis zu folgender äquivalenz, die du auch so eben genannt hast:
A symm. pos. definit [mm] \gdw [/mm] Cholesky Zerlegung existiert


hast du da viell irgendwo was? +g+

Gruß Ari

Bezug
                                                        
Bezug
cholesky: Antwort
Status: (Antwort) fertig Status 
Datum: 13:45 Sa 18.11.2006
Autor: Hanno

Hallo Ari!

> ich meinte eigentlich den beweis zu folgender äquivalenz, die du auch so eben genannt hast:
> A symm. pos. definit $ [mm] \gdw [/mm] $ Cholesky Zerlegung existiert

Christian hat den Beweis doch bereits erbracht.

Bekannt ist dir bereits, dass für eine spd-Matrix die Cholesky-Zerlegung existiert. Besitze nun umgekehrt [mm] $A\in {\mathbb R}^{n\times n}$die [/mm] Cholesky-Zerlegung [mm] $A=L\cdot L^T$, [/mm] wobei $L$ eine untere Dreiecksmatrix mit von Null verschiedenen Einträgen auf der Diagonalen sei. Die Symmetrie von $A$ ist dann klar, denn [mm] $A^T [/mm] = [mm] (L\cdot L^T)=(L^T)^T\cdot L^T [/mm] = [mm] L\cdot L^T [/mm] = A$ (hierbei habe ich [mm] $(AB)^T [/mm] = [mm] B^T\cdot A^T$ [/mm] angewandt). Um die positive Definitheit nachzuweisen, müssen wir nun per Definition zeigen, dass für alle [mm] $x\neq [/mm] 0$ stets [mm] $x^T [/mm] A x>0$ gilt. Setzen wir hier [mm] $A=L\cdot L^T$ [/mm] ein, so erhalten wir [mm] $x^T [/mm] A x = [mm] x^T L^T [/mm] L x = [mm] (Lx)^T [/mm] (Lx) = [mm] \|Lx\|^2$. [/mm] Da [mm] $x\neq [/mm] 0$ und die Matrix $L$ regulär ist, d.h. einen trivialen Kern besitzt, ist [mm] $Lx\neq [/mm] 0$, d.h. [mm] $\|Lx\|>0$ [/mm] und daher [mm] $x^T [/mm] A x  = [mm] \|Lx\|^2 [/mm] > 0$.

Das war nun sehr ausführlich. Ist's klar geworden?


Liebe Grüße,
Hanno

Bezug
                                                                
Bezug
cholesky: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 19:35 Sa 18.11.2006
Autor: AriR

"Bekannt ist dir bereits, dass für eine spd-Matrix die Cholesky-Zerlegung existiert."
eigentlich genau das nicht. verstehe nicht wo man genau in dem beweis die voraussetzung braucht.

und zu deinem beweis der rückrichtung:

du hast ja gesagt, [mm] (Lx)^T(Lx)=\parallel Lx\parallel^2 [/mm]

da hat man doch zusagen die wúrzel aus [mm] (Lx)^T(Lx) [/mm] gezogen und dann als euklidische norm umgeschrieben und noch quadriert, damit gleichhilt gilt, müsste dafür aber nicht [mm] (Lx)^T(Lx)>0 [/mm] sein für alle x ??

Bezug
                                                                        
Bezug
cholesky: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:20 Fr 24.11.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Numerik linearer Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]