matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare Algebracharakteristisches Polynom
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Lineare Algebra" - charakteristisches Polynom
charakteristisches Polynom < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

charakteristisches Polynom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:08 Mi 16.04.2008
Autor: SusanneK

Aufgabe
Sei V ein endl.dimensionaler Vektorraum über einem Körper K. Seien U und W Unterräume von V und sei [mm] V=U \oplus W[/mm]. Seien [mm] f_1: U \to U, f_2: W \to W [/mm] linear. Sei [mm] f \in End(V) [/mm] definiert durch [mm] f(v)=f_1(u) + f_2(w) [/mm] für alle [mm] v=u+w [/mm] in V mit [mm] u \in U, w \in W [/mm].
Beweisen Sie, dass [mm] x_f=x_f_1x_f_2 [/mm] ist. (x=charakteristisches Polynom)

Ich habe diese Frage in keinem anderen Forum gestellt.

Hallo, mein Ansatz - leider sehr wenig - ist Folgender:
Ich denke mal, dass die Eigenwerte von [mm] f_1 [/mm] und [mm] f_2 [/mm] verschieden sind, da U und W komplementär sind.
Dadurch sind dann auch die Eigenvektoren von [mm] f_1 [/mm] und [mm] f_2 [/mm] verschieden.
Stimmt das ?
Leider weiss ich nicht so richtig weiter.

Danke, Susanne.

        
Bezug
charakteristisches Polynom: Antwort
Status: (Antwort) fertig Status 
Datum: 18:18 Mi 16.04.2008
Autor: angela.h.b.


> Sei V ein endl.dimensionaler Vektorraum über einem Körper
> K. Seien U und W Unterräume von V und sei [mm]V=U \oplus W[/mm].
> Seien [mm]f_1: U \to U, f_2: W \to W[/mm] linear. Sei [mm]f \in End(V)[/mm]
> definiert durch [mm]f(v)=f_1(u) + f_2(w)[/mm] für alle [mm]v=u+w[/mm] in V
> mit [mm]u \in U, w \in W [/mm].
>  Beweisen Sie, dass [mm]x_f=x_f_1x_f_2[/mm]
> ist. (x=charakteristisches Polynom)

>  Ich denke mal, dass die Eigenwerte von [mm]f_1[/mm] und [mm]f_2[/mm]
> verschieden sind, da U und W komplementär sind.

Hallo,

hierfür sehe ich keinen Grund.

Gegenbeispiel: [mm] \IR^2=<\vektor{1 \\ 0}>+<\vektor{0 \\ 1}> [/mm]

[mm] f_1 [/mm] : Identitat auf [mm] <\vektor{1 \\ 0}>, f_2: [/mm] Identität auf [mm] \vektor{0 \\ 1}. [/mm]

Beide habe den Eigenwert 1, (allerdings in der Tat verschiedene Eigenvektoren).


Mal ein Tip: Die Basen von U und W ergeben zusammen eine von V.

Stell mal fest, welche Gestalt die darstellende Matrix von f bzgl. dieser Basis hat, und erinnere Dich dann an die Determinanten von Blockmatrizen.

Gruß v. Angela



Bezug
                
Bezug
charakteristisches Polynom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:02 Mi 16.04.2008
Autor: SusanneK

Hallo Angela,
danke für Deine Hilfe !

Ich denke, die darstellende Matrix von f  ist eine Diagonalmatrix. Allerdings weiss ich nicht so richtig, warum.
Weil die Basisvektoren linear unabhängig sind ? Das muss doch nicht zwingend eine Diagonalmatrix ergeben ?
Bei einer Blockmatrix werden die char.Polynome multipliziert, genau was man beweisen muss, aber durch eine Addition von [mm] f_1 [/mm] und [mm] f_2 [/mm] bekomme ich doch keine Blockmatrix ?

LG, Susanne.

Bezug
                        
Bezug
charakteristisches Polynom: Antwort
Status: (Antwort) fertig Status 
Datum: 07:41 Do 17.04.2008
Autor: angela.h.b.


> Ich denke, die darstellende Matrix von f  ist eine
> Diagonalmatrix.

Hallo,

nein, eine Diagonalmatrix ist das i.a. nicht, das, was Du sagst, hat aber trotzdem einen wahren Kern: es ist eine diagonale Blockmatrix (oder heißt das: Blockdiagonalmatrix?)

Wir machen jetzt noch ein Beispiel. Genauer gesagt sollst Du es machen.

Es sei V=U [mm] \oplus [/mm] W,
[mm] (u_1,u_2) [/mm] eine Basis von U und
[mm] (w_1, w_2,w_3) [/mm] eine Basis von W.

Jetzt betrachte zwei lineare Abbildungen,

[mm] f_U: [/mm] U [mm] \to [/mm] U  mit
[mm] f(u_1) :=u_1+2u_2 [/mm]
[mm] f(u_2) :=3u_1+4u_2, [/mm]

[mm] f_W: [/mm] W [mm] \to [/mm] W  mit
[mm] f(w_1) :=5w_1+4w_2+3w_3 [/mm]
[mm] f(w_2) :=2w_2 [/mm]
[mm] f(w_3) :=5w_1+5w_2+5w_3 [/mm]

Mach nun folgendes:

Schreibe die Darstellungsmatizen von [mm] f_U [/mm] bzgl [mm] (u_1,u_2) [/mm] auf und die von [mm] f_W [/mm] bzgl. [mm] (w_1, w_2,w_3). [/mm]


Nun betrachten wir den Endomorphismus  f des "großen" Raumes V, mit

f(v):= [mm] f_U(u) [/mm] + [mm] f_W(w) [/mm]   für alle v=u+w [mm] \in [/mm] V mit  [mm] u\in [/mm] U, [mm] w\in [/mm] W.

Bedenke, daß [mm] (u_1,u_2,w_1, w_2,w_3) [/mm] eine Basis von V ist, und stell die Darstellungsmatrix bzgl dieser Abbildung auf. Der Weg zum charakteristischen Polynom ist dann nicht mehr weit.

Wenn Dir dieses Beispiel geglückt ist, wirst Du verstehen, warum die Aussage, die Du beweisen sollst, stimmt. (Ich mache das übrigens oft so, daß ich mir zu solchen Aufgaben erstmal ein Beipiel mache, um alles zu begreifen.)

Gruß v. Angela






Bezug
                                
Bezug
charakteristisches Polynom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:08 Do 17.04.2008
Autor: SusanneK

Hallo Angela,
erstmal VIELEN VIELEN DANK für diese tolle Erklärung.

> Jetzt betrachte zwei lineare Abbildungen,
>
> [mm]f_U:[/mm] U [mm]\to[/mm] U  mit
>  [mm]f(u_1) :=u_1+2u_2[/mm]
>  [mm]f(u_2) :=3u_1+4u_2,[/mm]
>  
> [mm]f_W:[/mm] W [mm]\to[/mm] W  mit
>  [mm]f(w_1) :=5w_1+4w_2+3w_3[/mm]
>  [mm]f(w_2) :=2w_2[/mm]
>  [mm]f(w_3) :=5w_1+5w_2+5w_3[/mm]
>  
> Mach nun folgendes:
>  
> Schreibe die Darstellungsmatizen von [mm]f_U[/mm] bzgl [mm](u_1,u_2)[/mm] auf
> und die von [mm]f_W[/mm] bzgl. [mm](w_1, w_2,w_3).[/mm]

Darstellungsmatrix von [mm] f_U=\pmat{1&3\\2&4} [/mm]
Darstellungsmatrix von [mm] f_W=\pmat{5&0&5\\4&2&5\\3&0&5} [/mm]

> Nun betrachten wir den Endomorphismus  f des "großen"
> Raumes V, mit
>  
> f(v):= [mm]f_U(u)[/mm] + [mm]f_W(w)[/mm]   für alle v=u+w [mm]\in[/mm] V mit  [mm]u\in[/mm] U,
> [mm]w\in[/mm] W.
>  
> Bedenke, daß [mm](u_1,u_2,w_1, w_2,w_3)[/mm] eine Basis von V ist,
> und stell die Darstellungsmatrix bzgl dieser Abbildung auf.
> Der Weg zum charakteristischen Polynom ist dann nicht mehr
> weit.

Achso, ist das jetzt die direkte Summe, also
[mm] \pmat{1&3&0&0&0\\2&4&0&0&0\\0&0&5&0&5\\0&0&4&2&5\\0&0&3&0&5}[/mm]  ?

> Wenn Dir dieses Beispiel geglückt ist, wirst Du verstehen,
> warum die Aussage, die Du beweisen sollst, stimmt. (Ich
> mache das übrigens oft so, daß ich mir zu solchen Aufgaben
> erstmal ein Beipiel mache, um alles zu begreifen.)

Ja, super, wenn meine Bemerkungen stimmen, hab ich es jetzt verstanden - VIELEN DANK !

LG, Susanne.

Bezug
                                        
Bezug
charakteristisches Polynom: Antwort
Status: (Antwort) fertig Status 
Datum: 17:00 Do 17.04.2008
Autor: angela.h.b.


>  Achso, ist das jetzt die direkte Summe, also
>  
> [mm]\pmat{1&3&0&0&0\\2&4&0&0&0\\0&0&5&0&5\\0&0&4&2&5\\0&0&3&0&5}[/mm]
>  ?

Hallo,

ja, genau.

Jetzt hast Du es verstanden, was mich freut.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]