matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare Algebracharakteristisches Polynom
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Lineare Algebra" - charakteristisches Polynom
charakteristisches Polynom < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

charakteristisches Polynom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:53 Mi 27.09.2006
Autor: hooover

Aufgabe
Bestimme das charakteristisches Polynom einer Matrix der Form

[mm] A=\pmat{ 0 & . & . & . & . & -a_{n} \\ 1 & 0 & . & . & . & -a_{n}-1 \\ & . & . & & & . \\ & & .& . & & . \\ & & & . & 0 & -a_{2} \\ & & & & 1 & -a_{1} } [/mm]

Was fällt dir auf?

Hallo alle zusammen,

ich weiß nicht genau wie man das machen sollte.

Konkret kann ich das bestimmen aber so allgemein:(

[mm] P_{A}(\lambda)=det(A-\lambda*I)=(-\lambda)...(-a_{1}-\lambda) [/mm]

diese Frage aber Was fällt Dir auf ist schon merkwürdig, würde ja vermuten das [mm] P_{A}(\lambda)=0 [/mm]

kann ich aber nicht genau sagen wüßte auch nicht wie ich das zeigen soll.

wäre nett wenn mir da jemand etwas helfen könnte

Vilen Dank Gruß hooover

        
Bezug
charakteristisches Polynom: Antwort
Status: (Antwort) fertig Status 
Datum: 18:25 Mi 27.09.2006
Autor: felixf

Hallo hooover!

> Bestimme das charakteristisches Polynom einer Matrix der
> Form
>  
> [mm]A=\pmat{ 0 & . & . & . & . & -a_{n} \\ 1 & 0 & . & . & . & -a_{n}-1 \\ & . & . & & & . \\ & & .& . & & . \\ & & & . & 0 & -a_{2} \\ & & & & 1 & -a_{1} }[/mm]
>  
> Was fällt dir auf?
>  Hallo alle zusammen,
>  
> ich weiß nicht genau wie man das machen sollte.

Per Induktion ;-) Versuch es doch erstmal fuer $n = 2, 3, 4$ konkret auszurechnen und stelle eine Vermutung auf. Dann versuche, sie per Induktion zu beweisen. Dazu kannst du dann etwa eine Laplace-Entwicklung der Determinante nach der ersten Spalte machen.

> Konkret kann ich das bestimmen aber so allgemein:(
>  
> [mm]P_{A}(\lambda)=det(A-\lambda*I)=(-\lambda)...(-a_{1}-\lambda)[/mm]

Was genau meinst du damit?

> diese Frage aber Was fällt Dir auf ist schon merkwürdig,
> würde ja vermuten das [mm]P_{A}(\lambda)=0[/mm]

Du meinst, dass das charakteristische Polynom das Nullpolynom ist? Sicher nicht, da es Grad $n$ hat.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]