matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare Algebrachar polynom; eigenräume
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Lineare Algebra" - char polynom; eigenräume
char polynom; eigenräume < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

char polynom; eigenräume: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:52 Mi 16.05.2007
Autor: AriR

hey leute

habe folgende matrix:

[mm] \pmat{ 1 & 1 \\ 1 & 0 } [/mm]

und wollte hierzu EW und Eigenräume berechnen:

für die Nst des char. Poylnoms habe ihc raus:

[mm] \lambda_1=\bruch{1+\wurzel5}2 [/mm] und [mm] \lambda_2=\bruch{1-\wurzel{5}}{2} [/mm]


wenn ich mir jetzt hierzur die Eigenräume angucken, und den Kern [mm] A-\lambda_1*id [/mm] berechne, bekomme ich irgendwie immer nur die 0 obwohl das ja gar nicht kann, weil [mm] \lambda_1 [/mm] die Nst des char. Polynoms ist.

wisst ihr was ich falsch mache? hab die EW par mal nachgerechnet und finde keinen fehler.

bei der berechnung des Eigenraums bekomme ich am ende heraus:


[mm] \pmat{ { \bruch{2-\bruch{1+\wurzel5}2}2 } & 1 \\ 0 & {-\bruch{\wurzel{5}}2} } [/mm] * x = 0


und daraus folgt ja direkt x=0 :(

sieht einer viell irgendwo den fehler?

gruß ari ;)

        
Bezug
char polynom; eigenräume: Antwort
Status: (Antwort) fertig Status 
Datum: 10:22 Mi 16.05.2007
Autor: angela.h.b.


> hey leute
>  
> habe folgende matrix:
>  
> [mm]\pmat{ 1 & 1 \\ 1 & 0 }[/mm]
>  
> und wollte hierzu EW und Eigenräume berechnen:
>  
> für die Nst des char. Poylnoms habe ihc raus:
>  
> [mm]\lambda_1=\bruch{1+\wurzel5}2[/mm] und
> [mm]\lambda_2=\bruch{1-\wurzel{5}}{2}[/mm]
>  
>
> wenn ich mir jetzt hierzur die Eigenräume angucken, und den
> Kern [mm]A-\lambda_1*id[/mm] berechne, bekomme ich irgendwie immer
> nur die 0 obwohl das ja gar nicht kann, weil [mm]\lambda_1[/mm] die
> Nst des char. Polynoms ist.
>  
> wisst ihr was ich falsch mache? hab die EW par mal
> nachgerechnet und finde keinen fehler.
>  
> bei der berechnung des Eigenraums bekomme ich am ende
> heraus:
>  
>
> [mm]\pmat{ { \bruch{2-\bruch{1+\wurzel5}2}2 } & 1 \\ 0 & {-\bruch{\wurzel{5}}2} }[/mm]
> * x = 0
>  
>
> und daraus folgt ja direkt x=0 :(
>  
> sieht einer viell irgendwo den fehler?

Hallo,

die Eigenwerte sind richtig.

Da ich nicht weiß, wie Du umgeformt hast, weiß ich natürlich nicht, wo der Fehler liegt.

Jedenfalls kann der EV nicht =0 sein, das hast Du richtig erkannt.

Nochmal rechnen!
Wenn Du den Fehler nicht findest, kannst Du es ja hier vorrechnen.

Gruß v. Angela

Bezug
                
Bezug
char polynom; eigenräume: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:31 Mi 16.05.2007
Autor: AriR

der übliche vorzeichenfehler :D

habs jetzt glaub ich danke :)

hab den fehler die ganze zeit wie wild bei den EW gesucht

danke für die hilfe, gruß ari

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]