matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe Analysiscauchysche formel
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Komplexe Analysis" - cauchysche formel
cauchysche formel < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

cauchysche formel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:29 Fr 26.02.2010
Autor: mathestudent25

Aufgabe
[mm] Int((e^{z^2})(1/z^2-1/z^3),z) [/mm] über die Kurve C={z| betrag(z)=1}

hmm ... das soll ich mit der cauchyschen formel berechnen.

ich komme auf
f(0)=1/(2Pi*i)*Int(1/z*f(z),z) wobei [mm] f(z)=(e^{z^2})/z [/mm]
... dann macht das keinen sinn mehr denn ich muss ja f(0) einsetzen und da hab ich bei f(z) an stelle z=0 ja ein problem ...

bin ich da den falchen weg gegangen?

        
Bezug
cauchysche formel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:55 Fr 26.02.2010
Autor: mathestudent25

ich hab grad eine weitere formel von cauchy gefunden, mit ableitungen und dann gibt es keine polstelle bei meinem f(z) und ich komm auf einen wert vom integral von -2Pi*i .... stimmt das??!!??

Bezug
                
Bezug
cauchysche formel: Antwort
Status: (Antwort) fertig Status 
Datum: 10:09 So 28.02.2010
Autor: felixf

Moin!

> ich hab grad eine weitere formel von cauchy gefunden, mit
> ableitungen und dann gibt es keine polstelle bei meinem
> f(z)

Genau die Formel solltest du auch nehmen.

> und ich komm auf einen wert vom integral von -2Pi*i
> .... stimmt das??!!??

Das kommt hin.

LG Felix


Bezug
                        
Bezug
cauchysche formel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:08 Mo 01.03.2010
Autor: mathestudent25

vielen lieben dank felix!!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]