matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebracauchy schwarz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Algebra" - cauchy schwarz
cauchy schwarz < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

cauchy schwarz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:05 Do 15.02.2007
Autor: DerHochpunkt

hallo. was ist cauchy schwarz. wofür ist es da und bitte zeigt mir ein beispiel.

mit freundlichen grüßen,

niklas

        
Bezug
cauchy schwarz: Antwort
Status: (Antwort) fertig Status 
Datum: 21:10 Do 15.02.2007
Autor: Steffi21

Hallo,

lese bitte hier nach: []Cauchy Schwarzsche Ungleichung

Steffi


Bezug
                
Bezug
cauchy schwarz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:00 Fr 16.02.2007
Autor: DerHochpunkt

bei wikipedia habe ich schon nachgeschaut. aber ich verstehe nur bahnhof. ich verstehe weder die formeln noch wofür die cauchy schwarz'sche ungleichung nun eigentlich da ist. kann mir das nicht jemand noch etwas genauer erklären.

danke vorab.

Bezug
                        
Bezug
cauchy schwarz: Ungleichung
Status: (Antwort) fertig Status 
Datum: 20:14 Fr 16.02.2007
Autor: clwoe

Hi,

du kannst mit dieser Ungleichung eigentlich nichts spezielles ausrechnen. Sie zeigt lediglich einen Zusammenhang zwischen einer Norm und einem Skalarprodukt.
Außerdem gehört die Cauchy-Schwarz Ungleichung laut Definition zu den Eigenschafter einer Norm.
Auch in vielen Beweisen für andere Dinge braucht man sie immer wieder.

Gruß,
clwoe




Bezug
                                
Bezug
cauchy schwarz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:08 Fr 16.02.2007
Autor: DerHochpunkt

und was ist das für ein zusammenhang zwischen norm und skalarprodukt?

was ist das überhaupt: eine norm?

Bezug
                                        
Bezug
cauchy schwarz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 06:42 Sa 17.02.2007
Autor: mathwizard

Eine Zwischenfrage:
Weshalb willst du wissen was Cauchy-Schwarz ist?
Bzw. in welchem Zusammenhang ist es vorgekommen...?

Bezug
                                        
Bezug
cauchy schwarz: Antwort
Status: (Antwort) fertig Status 
Datum: 08:49 Sa 17.02.2007
Autor: angela.h.b.


> und was ist das für ein zusammenhang zwischen norm und
> skalarprodukt?


Hallo,

so wie Du es nachlesen kannst: der Betrag des Skalarproduktes zweier Vektoren ist [mm] \le [/mm] dem Produkt ihrer Norm.

Du kannst das manchmal zum Abschätzen gebrauchen.

>  
> was ist das überhaupt: eine norm?

Es ist eine Abbildung von einem Vektorraum in die pos. reelen Zahlen, deren Eigenschaft Du []hier nachlesen kannst. (Bis "Einordnung").

Stell sie Dir vorerst einfach als "Vektorlänge" vor.

Zum Beispiel ist der "Betrag eines Vektors" eine Norm.

Gruß v. Angela

Bezug
                                                
Bezug
cauchy schwarz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:51 So 18.02.2007
Autor: DerHochpunkt

und ein vektorraum ist was?

soll irgend etwas sein, was von zwei vektoren aufgespannt wird oder?

Bezug
                                                        
Bezug
cauchy schwarz: Vektorraum
Status: (Antwort) fertig Status 
Datum: 22:39 So 18.02.2007
Autor: clwoe

Hi,

also bevor du wissen möchtest was die Cauchy-Schwarz´sche Ungleichung ist, solltest du dich erst einmal mit den Grundlagen der Linearen Algebra vertraut machen. Ist nicht böse gemeint, aber nur wenn man die Grundlagen verstanden hat, macht der Rest überhaupt erst einen Sinn. Sonst beschäftigt man sich mit Dingen, deren Tiefe und Sinn man überhaupt nicht versteht, geschweige denn, dass man die Dinge, mit denen man sich beschäftigt überhaupt anwenden kann!

Ich geb dir mal die Definition für einen Vektorraum.

Ein Vektorraum wie z.B. der [mm] R^{\IN} [/mm] oder auch der [mm] K^{\IN} [/mm] sind nicht-leere Mengen von n-Tupeln [mm] (v_{1},v_{2},...,v_{n}) [/mm] mit [mm] v_{n}\in \IR [/mm] für die folgende Gesetze gelten:

1) Es gilt die Addition mit Kommutativgesetz und Assoziativgesetz.
Außerdem gibt es ein Inverses Element und ein Neutrales Element.

2) Es gilt die Skalarmultiplikation mit Assoziativgesetz und Distributivgesetz. Und es gibt ein Neutrales Element.

Es gibt allerdings noch viele andere Arten von Vektorräumen. Im Allgemeinen sind es aber wie gesagt Mengen, für die die obigen Gesetze gelten, ganz egal ob die Menge aus Vektoren oder aus Funktionen besteht.

Gruß,
clwoe


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]