matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10bruchrechnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Mathe Klassen 8-10" - bruchrechnung
bruchrechnung < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

bruchrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:19 Mi 15.10.2008
Autor: runn3r

Aufgabe
[mm] \bruch{4(x+1)}{2} [/mm] + [mm] \bruch{3(2x-1)}{3} [/mm] = [mm] \bruch{x+2}{4} [/mm] - [mm] \bruch{5x+1}{8} [/mm]


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


so.. und zuguter letzt noch eine kleien bruchrechnung. möchte nur mal wissen ob mein ergebnis richtig ist. glaube es nciht denn ich hab 0,4 raus o0
habe dann so angefangn
[mm] \bruch{4(x+1)*12}{24} [/mm] + [mm] \bruch{(6x-3)*8}{24} [/mm] = [mm] \bruch{6x+12)}{24} [/mm] - [mm] \bruch{5x+1)}{8} [/mm] ....

        
Bezug
bruchrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:28 Mi 15.10.2008
Autor: Steffi21

Hallo,

du hast im letzten Bruch noch den Nenner 8, diesen Bruch erweitere mit 3, um auch den Nenner 24 zu erhalten,
multipliziere dann die gesamte Gleichung mit 24, du hast keine Brüche mehr,
löse jetzt alle Klammern auf, fasse zusammen und stelle nach x um,

0,4 ist nicht das richtige Ergebnis, du kannst für dich zur Kontrolle immer die Probe machen,

Steffi

Bezug
                
Bezug
bruchrechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:30 Mi 15.10.2008
Autor: runn3r

oh ja stimmt hatte das beim abtippen vergessen...

Bezug
                
Bezug
bruchrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:37 Mi 15.10.2008
Autor: runn3r

hm was kommt denn nun raus? jetzt hatte ich x=0,31

Bezug
                        
Bezug
bruchrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:38 Mi 15.10.2008
Autor: Steffi21

Hallo, auch das ist nicht korrekt, schreibe mal bitte deinen Lösungsweg auf, dann können wir dir sagen, wo bei dir Fehler passiert sind, Steffi

Bezug
                                
Bezug
bruchrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:48 Mi 15.10.2008
Autor: runn3r

Aufgabe
[mm] \bruch{4(x+1)}{2} [/mm] + [mm] \bruch{3(2x-1)}{3} [/mm] = [mm] \bruch{x+2}{4} [/mm] - [mm] \bruch{5x+1}{8} [/mm]

[mm] \bruch{4(x+1)*12}{24} [/mm] + [mm] \bruch{(6x-3)*8}{24} [/mm] = [mm] \bruch{6x+12)}{24} [/mm] - [mm] \bruch{15x+3)}{24} [/mm]

48x+12+48x-24 = 6x+12-15x+3
96x+12              = 15  
87x                    =3
x                         = 0,0345

Bezug
                                        
Bezug
bruchrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:59 Mi 15.10.2008
Autor: Steffi21

Hallo,

dir sind zwei Fehler unterlaufen

48x+48+48x-24=6x+12-15x-3

48=4*1*12
im letzten Bruch steht -(15x+3)=-15x-3 steht vor der Klammer -, so kehren sich die Vorzeichen um,
jetzt kannst du erneut zusammenfassen,
Steffi

Bezug
                                                
Bezug
bruchrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:10 Mi 15.10.2008
Autor: runn3r

jetzt habe ich da dann -0,172 raus.  hmm was ein mist!

Bezug
                                                        
Bezug
bruchrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:20 Mi 15.10.2008
Autor: Steffi21

Hallo, du hast dich leider erneut verrechnet [mm] x=-\bruch{1}{7}, [/mm] eventuell ist es ja nur ein Schreibfehler, nicht in Dezimalbruch umwandeln, Steffi

Bezug
                                                                
Bezug
bruchrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:29 Mi 15.10.2008
Autor: runn3r

oh mein gott^^ ne aber ich bekom i´mmer das gleiche jetzt raus.
48x+48+48x-24 = -9x+9
96x+                  = -9x-15
87x                    = -15
               x         =  -5/29    oder -0,1724

habe echt kein plan wo der fehler sein soll

Bezug
                                                                        
Bezug
bruchrechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:33 Mi 15.10.2008
Autor: runn3r

ahh schon ok ich hab es :D:D  vielen dank ;)

lg kev

Bezug
                                                                        
Bezug
bruchrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:34 Mi 15.10.2008
Autor: Steffi21

Hallo

96x=-9x-15 ist korrekt, jetzt +9x auf beiden Seiten der Gleichung

105x=-15

[mm] x=-\bruch{15}{105}=-\bruch{1}{7} [/mm]

Steffi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]