matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMaßtheorieborelmenge
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Maßtheorie" - borelmenge
borelmenge < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

borelmenge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:54 So 21.12.2008
Autor: mini111

Aufgabe
Begründen Sie, warum für [mm] $\alpha, \beta, \gamma [/mm] >0$ die Menge [mm] $E_{\alpha, \beta, \gamma}:=\{(x,y,z) \in \IR^3\ :\ (x/\alpha)^2 + (y/\beta)^2 + (z/\gamma)^2 \le 1 \}$ [/mm]
eine Borelmenge ist und berechnen Sie [mm] $\lambda^3 (E_{\alpha, \beta, \gamma})$. [/mm] Dabei dürfen Sie ohne Beweis benutzen, dass [mm] $\lambda^3(E_{1,1,1})=4*\pi/3$ [/mm] gilt.

Hallo,

Ich weiß nicht wie ich das hier machen könnte.also was eine Borelmenge ist,habe ich glaube ich so ungefähr verstanden aber hier kann ich das irgendwie nicht anwenden.würde mich über Hilfe freuen!

gruß

        
Bezug
borelmenge: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:30 So 21.12.2008
Autor: angela.h.b.


> Begründen sie,warum für [mm]\alpha, \beta, \gamma[/mm] >0 die Menge
>  [mm]E_{\alpha, \beta, \gamma}:={(x,y,z) \in \IR^3 : (x/\alpha)^2 + (y/\beta)^2 + (z/\gamma)^2 \le 1 }[/mm]
>  
> eine Borlemenge ist und berechnen sie [mm]\lambda^3 (E_{\alpha, \beta, \gamma})[/mm]
> .Dabei dürfen sie ohne Beweis benutzen,dass
> [mm]\lambda^3(E_{1,1,1})=4*Pi/3[/mm] gilt.
>  Hallo,
>  
> Ich weiß nicht wie ich das hier machen könnte.also was eine
> Borelmenge ist,habe ich glaube ich so ungefähr verstanden
> aber hier kann ich das irgendwie nicht anwenden.würde mich
> über Hilfe freuen!

Hallo,

ich denke, daß es nützlich wäre, würdest Du mal posten, wie Ihr "Borelmenge" definiert habt.

Dann kannst Du sicher auch besser erklären, wo Dein Problem liegt.

Gruß v. Angela



Bezug
                
Bezug
borelmenge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:05 So 21.12.2008
Autor: mini111

Hallo Angela,

Ja also wir haben das so definiert:
sei (X,d) ein metr. Raum und O die Menge aller offenen Teilmengen von X.Die kleinste sigma-Algebra in X,welche O enthält,bez. man als die sigma-algebra B(X) der Borelschen Teilmengen von X.
Irgendwo habe ich gelesen,dass abgeschlossene und offene Mengen Borelmengen sind.Gilt das immer?und wenn ja verstehe ich nicht ganz warum.

Gruß

Bezug
                        
Bezug
borelmenge: Antwort
Status: (Antwort) fertig Status 
Datum: 22:17 So 21.12.2008
Autor: Merle23

[]Hier steht nochmal was eine [mm]\sigma-Algebra[/mm] ist.

Wie du siehst ist zu jeder Menge auch ihr Komplement drin.

Wenn du dir jetzt die Menge [mm] \mathcal{O} [/mm] aller offenen Teilmengen nimmst und daraus eine [mm]\sigma-Algebra[/mm] bauen willst, musst du also schon mal jedes Komplement jeder offenen Menge mit reinnehmen.

Und per Definition sind die Komplemente offener Mengen die abgeschlossenen Mengen.



Bezug
        
Bezug
borelmenge: Antwort
Status: (Antwort) fertig Status 
Datum: 22:24 So 21.12.2008
Autor: Merle23

Wir haben ja schon festgestellt, dass in der [mm]Borelschen-\sigma-Algebra[/mm] des [mm] \IR^3 [/mm] alle offenen und abgeschlossenen Mengen drin sind.

Dir bleibt also zu zeigen, dass [mm] E_{\alpha,\beta,\gamma} [/mm] eine abgeschlossene Menge ist.

Es ist [mm] E_{1,1,1} [/mm] die abgeschlossene Einheitskugel und allgemein [mm] E_{\alpha,\beta,\gamma} [/mm] ein []Ellipsoid.

Bezug
                
Bezug
borelmenge: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 10:31 Mo 22.12.2008
Autor: mini111

Hallo Merle23,

Danke für die Hilfe!Ich würd sagen,dass der Rand des Ellipsoids, wegen [mm] \le [/mm] 1 mit in der menge liegt und deshalb die Menge abgeschlossen ist und [mm] \Rightarrow [/mm] Borelmenge. aber wahrscheinlich reicht das wohl kaum als begründung oder?

Gruß

Bezug
        
Bezug
borelmenge: Antwort
Status: (Antwort) fertig Status 
Datum: 13:07 Mo 22.12.2008
Autor: Marc

Hallo,

> Begründen Sie, warum für [mm]\alpha, \beta, \gamma >0[/mm] die Menge
> [mm]E_{\alpha, \beta, \gamma}:=\{(x,y,z) \in \IR^3\ :\ (x/\alpha)^2 + (y/\beta)^2 + (z/\gamma)^2 \le 1 \}[/mm]
>  
> eine Borelmenge ist und berechnen Sie [mm]\lambda^3 (E_{\alpha, \beta, \gamma})[/mm].
> Dabei dürfen Sie ohne Beweis benutzen, dass
> [mm]\lambda^3(E_{1,1,1})=4*\pi/3[/mm] gilt.

>  
> Ich weiß nicht wie ich das hier machen könnte.also was eine
> Borelmenge ist,habe ich glaube ich so ungefähr verstanden
> aber hier kann ich das irgendwie nicht anwenden.würde mich
> über Hilfe freuen!

Es sollte so funktionieren:
Betrachte die Abbildung [mm] $\varphi:\ \IR^3\to\IR,\ (x,y,z)\mapsto (x/\alpha)^2 [/mm] + [mm] (y/\beta)^2 [/mm] + [mm] (z/\gamma)^2$. [/mm]
Diese Abbildung ist stetig.
Außerdem gilt [mm] $\varphi^{-1}([0,1])=E_{\alpha, \beta, \gamma}$, [/mm] d.h, deine Menge [mm] $E_{\alpha, \beta, \gamma}$ [/mm] ist das Urbild eines abgeschlossenen Intervalls unter einer stetigen Abbildung. Was folgt daraus?

Du kannst auch so argumentieren:
Versehe [mm] $\IR^3$ [/mm] und [mm] $\IR$ [/mm] mit den [mm] $\sigma$-Algebren [/mm] der Borelschen Mengen, also [mm] $\mathcal{B}(\IR^3)$ [/mm] und [mm] $\mathcal{B}(\IR)$. [/mm] Da [mm] $\varphi$ [/mm] stetig ist, ist [mm] $\varphi$ [/mm] auch Borel-messbar. Wegen [mm] $[0,1]\in\mathcal{B}(\IR)$ [/mm] und der Messbarkeit von [mm] $\phi$ [/mm] gilt auch [mm] $E_{\alpha, \beta, \gamma}=\varphi^{-1}([0,1])\in \mathcal{B}(\IR^3)$. [/mm]

Viele Grüße,
Marc

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]