borel-messbar < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Es sei [mm] (\IR,\mathcal{A},\mu) [/mm] ein Maßraum mit
[mm] \mathcal{A}=\{ \IR,\emptyset,]-\infty,0],]0,\infty[\},
[/mm]
[mm] \mu (]-\infty,0]) [/mm] = 1, [mm] \mu (]0,\infty[) [/mm] = 1
Untersuche,welche der folgenden Funktionen (Borel-)messbar sund und bestimme ggf. ihr Integral.
(i) f : [mm] \IR \to [0,\infty[, f(x):=x^{2}
[/mm]
(ii) f : [mm] \IR \to \IR, [/mm] f(x):=7, [mm] x\in]-\infty,0], [/mm] und f(x):=3, [mm] x\in[0,\infty.[ [/mm] |
hallo,
ich weiß nicht so recht weiter bei der aufgabe, bzw. weiß ich nicht mit was genau ich argumentieren muss.
Borel-messbare funktionen sind funktionen,die stetig sind.
stetig ist eine funktionen,wenn ihr bild offen ist und ihr urbild ebenfalls.
richtig soweit?
bei (i) würde ich sagen,dass sowohl das bild als auch das urbild offen ist.die funktion ist stetig,aber nicht gleichmäßig stetig.hat das einfluss auf die messbarkeit?
ich weiß aich nicht genau,was ich mit den gegeben von [mm] \mathcal{A} [/mm] und [mm] \mu [/mm] anfangen soll.
ich glaube,so ganz blick ich da noch nicht durch.
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 19:22 Do 19.05.2011 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|