bogenlänge: integration < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 21:40 Mo 25.04.2011 | Autor: | wergor |
Aufgabe | bBerechne die bogenlänge der kurve: [mm] \gamma [/mm] = [mm] \overrightarrow{x(t)} [/mm] = [mm] \vektor{t^2 + 1 \\ t + 1}, [/mm] 0 [mm] \le [/mm] t [mm] \le [/mm] 1 : [mm] \integral_{\gamma}{(x^2 - y) dx + \bruch{1}{x + y} dy} [/mm] |
hallo,
ich habe ein problem mit dieser rechnung. nach ableiten der elemente des vektors [mm] \overrightarrow{x(t)} [/mm] und einsetzen in die gleichung erhalte ich
[mm] \integral_{0}^{1}{2t^5 + 4t^3 - 2t^2 + \bruch{1}{t^2 + t + 2} dt}
[/mm]
der erste teil lässt sich einfach in teilintervalle aufspalten und berechnen, aber der zweite teil macht schwierigkeiten. wie kann ich den teil berechnen? ich habe es schon mit der partialbruchzerlegung versucht, bin aber nicht weit gekommen (die komplexen nullstellen haben das alles noch unfreundlicher aussehen lassen als es schon ist). ich habe auch noch nicht geschafft, eine vernünftige substitution zu finden.
bitte um hilfe!
|
|
|
|
Hallo wergor,
> bBerechne die bogenlänge der kurve: [mm]\gamma[/mm] =
> [mm]\overrightarrow{x(t)}[/mm] = [mm]\vektor{t^2 + 1 \\ t + 1},[/mm] 0 [mm]\le[/mm] t
> [mm]\le[/mm] 1 : [mm]\integral_{\gamma}{(x^2 - y) dx + \bruch{1}{x + y} dy}[/mm]
>
> hallo,
>
> ich habe ein problem mit dieser rechnung. nach ableiten der
> elemente des vektors [mm]\overrightarrow{x(t)}[/mm] und einsetzen in
> die gleichung erhalte ich
> [mm]\integral_{0}^{1}{2t^5 + 4t^3 - 2t^2 + \bruch{1}{t^2 + t + 2} dt}[/mm]
>
> der erste teil lässt sich einfach in teilintervalle
> aufspalten und berechnen, aber der zweite teil macht
> schwierigkeiten. wie kann ich den teil berechnen? ich habe
> es schon mit der partialbruchzerlegung versucht, bin aber
> nicht weit gekommen (die komplexen nullstellen haben das
> alles noch unfreundlicher aussehen lassen als es schon
> ist). ich habe auch noch nicht geschafft, eine vernünftige
> substitution zu finden.
Wende zunächst auf den Nenner des Bruches
[mm]\bruch{1}{t^2 + t + 2}[/mm]
quadratische Ergänzang an,
bevor Du dann eine geeigenete Substitution wählst.
>
> bitte um hilfe!
Gruss
MathePower
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 14:57 Do 28.04.2011 | Autor: | wergor |
hallo,
habe versteckt im skriptum eine anleitung gefunden, wie solche integrale zu lösen sind (mit quadratischer ergänzung.) selbst wäre ich da wahrscheinlich nie drauf gekommen. danke für den hinweis!
mfg,
|
|
|
|