matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLängen, Abstände, Winkelbogenlänge - kreisevolvente
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Längen, Abstände, Winkel" - bogenlänge - kreisevolvente
bogenlänge - kreisevolvente < Längen+Abst.+Winkel < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

bogenlänge - kreisevolvente: Idee
Status: (Frage) beantwortet Status 
Datum: 14:35 So 07.06.2009
Autor: scr3tchy

Aufgabe
Die Länge der Kreisevolvente bestimmen.
       x = a (cos t + t sin t)
       y = a ( sin t - t cos t)           t [mm] \in [/mm] [0 , [mm] 2\pi] [/mm]

Hey Leute,

ich hab oben gegebene Aufgabe. Ich weiß überhaupt nich wie ich an diese Sache ran gehen soll. Ich weiß wie man eine Bogenlänge ausrechnet...allerdings nicht die von einer Kreisevolvente. Hoffe das mir hier jemand helfen kann.

        
Bezug
bogenlänge - kreisevolvente: Antwort
Status: (Antwort) fertig Status 
Datum: 14:57 So 07.06.2009
Autor: schachuzipus

Hallo scr3tchy,

> Die Länge der Kreisevolvente bestimmen.
>         x = a (cos t + t sin t)
>         y = a ( sin t - t cos t)           t [mm]\in[/mm] [0 ,
> [mm]2\pi][/mm]
>  Hey Leute,
>  
> ich hab oben gegebene Aufgabe. Ich weiß überhaupt nich wie
> ich an diese Sache ran gehen soll. Ich weiß wie man eine
> Bogenlänge ausrechnet...allerdings nicht die von einer
> Kreisevolvente. Hoffe das mir hier jemand helfen kann.  

Ich denke, die oben gegebene Kurve $(x(t),y(t))$ ist doch eine Kreisevolvente, berechne also nur wie üblich die Bogenlänge derselben (im Intervall [mm] $[0,2\pi]$) [/mm]

LG

schachuzipus


Bezug
                
Bezug
bogenlänge - kreisevolvente: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:10 So 07.06.2009
Autor: scr3tchy

ich kann das ganze echt wie gewohnt ausrechnen???
aber al noch eine doofe frage... :P
das gegebene y is doch mein f(x) oder???

Bezug
                        
Bezug
bogenlänge - kreisevolvente: Antwort
Status: (Antwort) fertig Status 
Datum: 16:06 So 07.06.2009
Autor: schachuzipus

Hallo nochmal,

> ich kann das ganze echt wie gewohnt ausrechnen??? [ok]
>  aber al noch eine doofe frage... :P
>  das gegebene y is doch mein f(x) oder???

Hm, du hast doch die Kurve (Kreisevolvente) [mm] $\gamma(t)=(x(t),y(t))$ [/mm] mit [mm] $t\in[0,2\pi]$ [/mm] gegeben.

Die Bogenlänge von [mm] $\gamma$ [/mm] ist [mm] $\int\limits_{0}^{2\pi}{||\gamma'(t)|| \ dt}=\int\limits_{0}^{2\pi}{||\left(x'(t),y'(t)\right)|| \ dt}=\int\limits_{0}^{2\pi}{\sqrt{\left(x'(t)\right)^2+\left(y'(t)\right)^2} \ dt}=...$ [/mm]

LG

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]