matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und Reihenbn berechnung fourierreihe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Folgen und Reihen" - bn berechnung fourierreihe
bn berechnung fourierreihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

bn berechnung fourierreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:29 Mi 22.11.2006
Autor: Gwin

hallo zusammen...

ich habe ein problem bei der berechnung von [mm] b_{n} [/mm] bei der fourierreihe...

i(t) = î*sin(t)

ausgangsgleichung: [mm] \bruch{2}{T}*\integral_{a}^{a+T/2}{i(t)*sin(n*t) dt} [/mm]
T=2*pi

[mm] -->\bruch{1}{\pi}*\integral_{0}^{\pi}{sin(t)*sin(n*t) dt} [/mm]

am ende bekomme ich raus:
[mm] \integral_{0}^{\pi}{sin(t)*sin(n*t) dt}=\bruch{1}{n^{2}}*\integral_{0}^{\pi}{sin(t)*sin(n*t) dt} [/mm]

[mm] -->\integral_{0}^{\pi}{sin(t)*sin(n*t) dt}(1-\bruch{1}{n^{2}})=0 [/mm]

daraus folgt für mich das [mm] \integral_{0}^{\pi}{sin(t)*sin(n*t) dt} [/mm] gleich null ist...

in der lösung wird jetzt allerdings noch die einschränkung gemacht das [mm] b_{1}=\bruch{i*\pi}{2} [/mm] ist und [mm] b_{2}=b_{3}=b_{4}=...=b_{n}=0 [/mm] ist...
könnte mir jemand von euch mal erklären wie man auf diesen sonderfall für n=1 kommt?

mfg Gwin




        
Bezug
bn berechnung fourierreihe: Kommentar
Status: (Antwort) fertig Status 
Datum: 19:45 Mi 22.11.2006
Autor: TorstenSBHH

Hallihallo.

Na, wenn Du die Fourierreihe von sin(x) berechnen willst, was kann dann schon anderes als sin(x) rauskommen? Und Du meintest wohl [mm] b_{1} [/mm] = [mm] \bruch{\pi}{2}!? [/mm] Das einzige Integral, was tatsächlich zu berechnen ist, ist [mm] \integral_{0}^{\pi}{sin^{2}(x)dx}. [/mm]

Gruß von Torsten

Bezug
                
Bezug
bn berechnung fourierreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:26 Mi 22.11.2006
Autor: Gwin

hi Torsten...

das mit dem [mm] sin(x)^{2} [/mm] verstehe ich ja aber ist das eine sache die man einfach wissen muß an dieser stelle oder gibt es irgendeine methode der integration von sin(x)*sin(n*x) wo man es direckt sieht das es nur für n = 1 geht oder sieht man es schon an irgend etwas wenn man es hinschreibt?...
ich hoffe man versteht was ich meine :)...

mfg Gwin

Bezug
                        
Bezug
bn berechnung fourierreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 20:53 Mi 22.11.2006
Autor: TorstenSBHH

Ja, verstehe was Du meinst. Aber Du hast es ja selbst geschrieben: Es gilt
[mm] \integral_{0}^{\pi} [/mm] {sin(x)sin(nx)dx} [mm] (1-\bruch{1}{n^{2}}) [/mm] = 0.
Daraus folgt, daß das Integral für n > 1 Null sein muß und damit auch [mm] b_{n}. [/mm] Bleibt also nur noch [mm] b_{1} [/mm] übrig. Ok?
Torsten

Bezug
                                
Bezug
bn berechnung fourierreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:46 Mi 22.11.2006
Autor: Gwin

hi...

also wirklich verstehen tue ich es nicht...

da ich bei
$ [mm] \integral_{0}^{\pi} [/mm] $ {sin(x)sin(nx)dx} $ [mm] (1-\bruch{1}{n^{2}}) [/mm] $ = 0
ja ein produkt habe das gleich 0 ist...
--> entweder kann dann $ [mm] \integral_{0}^{\pi} [/mm] $ {sin(x)sin(nx)dx} = o sein oder aber [mm] (1-\bruch{1}{n^{2}})=0... [/mm]
wenn ich jezt für n = 1 einsetze ist ja [mm] (1-\bruch{1}{n^{2}})=0 [/mm] und von dem her der gesamte ausdruck...
wenn ich jetzt in der klausur sitzen würde würde ich nach dieser erkenntniss sagen das es garkein [mm] b_{n} [/mm] gibt... auf die idee [mm] sin(x)^{2} [/mm] zu betrachen und zu integrieren würde ich beim allerbersten willen nicht kommen...
aber vieleicht muß ich mir das einfach merken und hoffen das soetwas einfach nocht drann kommt...

mfg Gwin

Bezug
                                        
Bezug
bn berechnung fourierreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 16:09 Do 23.11.2006
Autor: TorstenSBHH

Hallo.

Ich glaube, Du siehst gerade den Wald vor lauter Bäumen nicht ;-) Du willst b{n} := [mm] \integral_{0}^{\pi} [/mm] sin(x)sin(nx)dx berechnen.
Du spielst etwas rum und kriegst raus:
[mm] b_{n} (1-\bruch{1}{n}) [/mm] = 0 FÜR ALLE n [mm] \in \IN. [/mm]
Ist n>1, dann MUSS [mm] b_{n} [/mm] Null sein, denn in dem Fall ist [mm] 1-\bruch{1}{n} \not= [/mm] 0!! Du hast also nicht DIREKT BERECHNET, daß [mm] b_{n} [/mm] = 0 ist, sondern es aus der obigen Gleichung gefolgert.
Für n=1 bringt Dir diese Gleichung nichts imBezug auf den Wert von [mm] b_{1}. [/mm] Dann mußt Du wirklich zu Fuß rechnen. So hast Du also tricky alle [mm] b_{n} [/mm] bis auf das erste sofort als Null erkannt, das erste bleibt noch zu knacken. Alles klar jetzt?
Gruß von Torsten

Bezug
                                                
Bezug
bn berechnung fourierreihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:03 Sa 02.12.2006
Autor: Gwin

hi Torsten...

jetzt hat es klick gemacht :)...
man sucht ja quasi das n das die bedingung erfüllt und das ist nur die 1 ohne das [mm] b_{n}=0 [/mm] ist...
vielen dank für deine hilfe und deine gedult...

mfg Gwin

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]