matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10biquadratische Gleichungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Mathe Klassen 8-10" - biquadratische Gleichungen
biquadratische Gleichungen < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

biquadratische Gleichungen: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 16:04 Di 08.06.2004
Autor: SUNRISE

Kann mir bitte einer das noch ma genauer erklären an ner beispielaufgabe, des wäre sehr nett

thx im vorraus

@I_€X

        
Bezug
biquadratische Gleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:11 Di 08.06.2004
Autor: Oliver

Hallo Alex,

Gegenangebot meinerseits: stelle doch mal eine Aufgabe hier rein, mit der Du Probleme hast und sage uns dann, wo GENAU Dein Problem liegt. Wir helfen Dir dann gerne weiter und erklären Dir wie sich Deine Probleme lösen lassen. :))

Mach's gut
Oliver

Bezug
        
Bezug
biquadratische Gleichungen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:35 Do 10.06.2004
Autor: Josef

Gleichungen 4. Grades, in denen die Variable nur in der 2. und 4. Potenz vorliegt, nenn man biquadratisch. Sie haben maximal 4 Lösungen.

Beispiel:
[mm] x^4-2x^2-3 [/mm] = 0

Verfahren:
Man ersetzt [mm] x^2 [/mm] durch z und demzufolge [mm] x^4 [/mm] durch [mm] z^2; [/mm] so erhält man eine quadratische Gleichung mit der Unbekannten z:

[mm] z^2-2z-3 [/mm] = 0

Die Lösungen sind [mm] z_1 [/mm] = 3 und [mm] z_2 [/mm] = -1.

Damit sind die Lösungen der Ausgangsgleichung jedoch noch nicht errechnet.
Es sind, da z  = [mm] x^2 [/mm] ist, noch die Gleichung
[mm] z_1 [/mm] = 3  also [mm] x^2 [/mm]  = 3 und
[mm] z_2 [/mm] = -1 also [mm] x^2 [/mm] = -1 zu lösen.

Aus [mm] x^2 [/mm] =  3 folgt [mm] x_1 [/mm] = [mm]\wurzel{3}[/mm] und [mm] x_2 [/mm] = -[mm]\wurzel{3}[/mm]

Aus [mm] x^2 [/mm] = -1 ergeben sich keine weitern Lösungen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]