matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10binomische quadratwurzel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Mathe Klassen 8-10" - binomische quadratwurzel
binomische quadratwurzel < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

binomische quadratwurzel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:41 Di 27.10.2009
Autor: Helen1403

Aufgabe
( [mm] \wurzel{3} [/mm] - 1 ) [mm] (\wurzel{3}+1) [/mm]

ich weiß wie die binomischenformeln gehen & hab das alles auch von der tafel abgeschrieben aber versteh das irgendwie nicht

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


viele grüße

        
Bezug
binomische quadratwurzel: Antwort
Status: (Antwort) fertig Status 
Datum: 21:45 Di 27.10.2009
Autor: Steffi21

Hallo

du hast sicherlich gefunden [mm] (a-b)*(a+b)=a^{2}-b^{2} [/mm]

jetzt hast du [mm] a=\wurzel{3} [/mm] und b=1 berechne also

[mm] a^{2}=(\wurzel{3})^{2}= [/mm] ...

[mm] b^{2}=1^{2}= [/mm] ...

Steffi



Bezug
        
Bezug
binomische quadratwurzel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:16 Di 27.10.2009
Autor: Helen1403

Aufgabe 1
( $ [mm] \wurzel{3} [/mm] $ - 1 ) $ [mm] (\wurzel{3}+1) [/mm] $

Aufgabe 2
( $ [mm] \wurzel{3} [/mm] $ - 1 )  ( $ [mm] \wurzel{3}+1 [/mm] $ )

das ist ja die formel:
$ [mm] (a-b)\cdot{}(a+b)=a^{2}-b^{2} [/mm] $

also:  [mm] a=(\wurzel{3})^{2}= [/mm] $   [mm] \wurzel{9}$ [/mm]

b=  [mm] \wurzel{1}^{2}= \wurzel{1} [/mm]

ist das richtig & was muss ich dann machen ?
        



Bezug
                
Bezug
binomische quadratwurzel: Antwort
Status: (Antwort) fertig Status 
Datum: 22:20 Di 27.10.2009
Autor: fencheltee


> ( [mm]\wurzel{3}[/mm] - 1 ) [mm](\wurzel{3}+1)[/mm]
>  ( [mm]\wurzel{3}[/mm] - 1 )  ( [mm]\wurzel{3}+1[/mm] )
>  das ist ja die formel:
>  [mm](a-b)\cdot{}(a+b)=a^{2}-b^{2}[/mm]
>  
> also:  [mm]a=(\wurzel{3})^{2}=[/mm]  [mm]\wurzel{9}[/mm]

nicht a=... sondern [mm] a^2=... [/mm]
die wurzel kannst du im kopf ziehen ;-)

>  
> b=  [mm]\wurzel{1}^{2}= \wurzel{1}[/mm]

auch hier ist das [mm] b^2=.. [/mm] und wurzel auch im kopf ziehbar, und nun [mm] a^2-b^2=\sqrt9-\sqrt1 [/mm] = ?

>  
> ist das richtig & was muss ich dann machen ?
>          
>
>  


Bezug
                        
Bezug
binomische quadratwurzel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:27 Di 27.10.2009
Autor: Helen1403

Aufgabe 1
( $ [mm] \wurzel{3} [/mm] $ - 1 ) $ [mm] (\wurzel{3}+1) [/mm] $  

Aufgabe 2
( $ [mm] \wurzel{3} [/mm] $ - 1 ) $ [mm] (\wurzel{3}+1) [/mm] $

Aufgabe 3
( $ [mm] \wurzel{3} [/mm] $ - 1 )  ( $ [mm] \wurzel{3}+1 [/mm] $ )

das ist ja die formel:
$ [mm] (a-b)\cdot{}(a+b)=a^{2}-b^{2} [/mm] $

also:  [mm] a²=(\wurzel{3})^{2}= [/mm] $   [mm] \wurzel{9}$ [/mm]

b²=  [mm] \wurzel{1}^{2}= \wurzel{1} [/mm]

also [mm] \wurzel{9}$ [/mm] - [mm] \wurzel{1}$ [/mm]  = [mm] 3-\wurzel{1}$ [/mm] ??
        



Bezug
                                
Bezug
binomische quadratwurzel: Antwort
Status: (Antwort) fertig Status 
Datum: 22:29 Di 27.10.2009
Autor: fencheltee


> ( [mm]\wurzel{3}[/mm] - 1 ) [mm](\wurzel{3}+1)[/mm]
> ( [mm]\wurzel{3}[/mm] - 1 ) [mm](\wurzel{3}+1)[/mm]
>  ( [mm]\wurzel{3}[/mm] - 1 )  ( [mm]\wurzel{3}+1[/mm] )
>  das ist ja die formel:
>  [mm](a-b)\cdot{}(a+b)=a^{2}-b^{2}[/mm]
>  
> also:  [mm]a²=(\wurzel{3})^{2}=[/mm]  [mm]\wurzel{9}[/mm]
>  
> b²=  [mm]\wurzel{1}^{2}= \wurzel{1}[/mm]
>  
> also [mm]\wurzel{9}$[/mm] - [mm]\wurzel{1}$[/mm]  = [mm]3-\wurzel{1}$[/mm] ??

fast am ziel!
1 quadriert ergibt 1, also was ist dann wohl die wurzel von 1? :-)

>          
>
>  


Bezug
                                        
Bezug
binomische quadratwurzel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:32 Di 27.10.2009
Autor: Helen1403

Aufgabe
( $ [mm] \wurzel{3} [/mm] $ - 1 ) $ [mm] (\wurzel{3}+1) [/mm] $  

2 ? keine ahung ich schreib morgen eine arbeit & ich glaube die wird nicht gut ausgehen

Bezug
                                                
Bezug
binomische quadratwurzel: Antwort
Status: (Antwort) fertig Status 
Datum: 22:36 Di 27.10.2009
Autor: Marcel

Hallo,

> ( [mm]\wurzel{3}[/mm] - 1 ) [mm](\wurzel{3}+1)[/mm]
> 2 ? keine ahung ich schreib morgen eine arbeit & ich glaube
> die wird nicht gut ausgehen  

was ist denn die Aufgabe?

Wenn's nur um's ausrechnen geht:
[mm] $(a-b)*(a+b)=a^2-b^2$ [/mm] (3e binomische Formel!)

(Herleitung: [mm] $(a-b)*(a+b)=(a+b)*(a-b)=a^2+b*a+a*(-b)-b^2=a^2-b^2$). [/mm]

Oben ist [mm] $a=\sqrt{3}$ [/mm] und $b=1$ einzusetzen. Beachte dabei: [mm] $a^2=\sqrt{3}^2=3\,.$ [/mm]

Gruß,
Marcel

Bezug
                                                
Bezug
binomische quadratwurzel: P.S.
Status: (Antwort) fertig Status 
Datum: 22:42 Di 27.10.2009
Autor: Marcel

Sorry, hab' gerade erst gesehen, was Dein Problem noch ist:
[mm] $$(\sqrt{3}-1)*(\sqrt{3}+1)=\sqrt{3}^2-1^2\,.$$ [/mm]

Eigentlich sollte Dir bekannt sein, dass [mm] $\sqrt{x}^2=x$ [/mm] für alle $x [mm] \ge [/mm] 0$ ist. Aber Du hattest [mm] $\sqrt{3}^2=\sqrt{3^2}$ [/mm] gerechnet, was auch okay ist, da auch [mm] $\sqrt{x}^2=\sqrt{x^2}=x$ [/mm] für alle $x [mm] \ge [/mm] 0$ ist.

Allerdings ist nun [mm] $\sqrt{9}=\sqrt{3^2}=3$ [/mm] und mit [mm] $1^2=1$ [/mm] ist
[mm] $$\sqrt{3}^2-1^2=\sqrt{3^2}-1^2=3-1\,.$$ [/mm] Also, weil [mm] $3-1=2\,$ [/mm] ist, kommt in der Tat [mm] $2\,$ [/mm] am Ende raus!

Gruß,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]